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Abstract 

A newly identified novel coronavirus (SARS-CoV-2) is causing pneumonia-associated respiratory 
syndrome across the world. Epidemiology, genomics, and pathogenesis of the SARS-CoV-2 show high 
homology with that of SARS-CoV. Current efforts are focusing on development of specific antiviral drugs. 
Therapeutic neutralizing antibodies (NAbs) against SARS-CoV-2 will be greatly important therapeutic 
agents for the treatment of coronavirus disease 2019 (COVID-19). Herein, the host immune responses 
against SARS-CoV discussed in this review provide implications for developing NAbs and understanding 
clinical interventions against SARS-CoV-2. Further, we describe the benefits, challenges and 
considerations of NAbs against SARS-CoV-2. Although many challenges exist, NAbs still offer a 
therapeutic option to control the current pandemic and the possible re-emergence of the virus in the 
future, and their development therefore remains a high priority. 
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Introduction 
The occurrence of coronavirus disease 2019 

(COVID-19) cases in Wuhan city, Hubei province of 
China firstly emerged in December 2019. A newly 
identified novel coronavirus (SARS-CoV-2, formerly 
known as 2019-nCoV) is causing pneumonia- 
associated respiratory syndrome [1]. After analysis of 
genome sequences of SARS-CoV-2 samples obtained 
from different infected patients, SARS-CoV-2 shares 
high sequence identity with SARS-CoV [2]. Compared 
to SARS-CoV, transmitted from human-to-human of 
SARS-CoV-2 seems to be greater. As of February 2020, 
at least 25 countries reported >70,000 cases of SARS- 
CoV-2 infection. Patients infected with SARS-CoV-2 
show typical pneumonia and severe lung damage [3]. 
COVID-19 can be diagnosed by either clinical CT 
radiography or a laboratory real time Reverse 
Transcription-Polymerase Chain Reaction (RT-PCR) 
[4]. Unfortunately, there are no specific antiviral 
drugs or vaccines currently. Several approaches can 
be suggested to control infections of SARS-CoV-2, 
including vaccines, monoclonal antibodies, 
oligonucleotides, peptides, interferon and small- 

molecule drugs [5]. The antibody-mediated 
humoral response is crucial for preventing viral 
infections. A subset of these antibodies, which reduce 
viral infectivity by binding to the surface epitopes of 
viral particles and thereby blocking the entry of the 
virus to an infected cell, are defined as neutralizing 
antibodies (NAbs) [6]. NAbs elicit their protective 
activities in three main steps. NAbs may prevent the 
attachment of the virion to its receptors on targeted 
cells, causing aggregation of virus particles. Further, 
the viruses are lysed through the constant (C) region 
of the antibody-mediated opsonization or 
complement activation [7]. This review focuses on 
understanding immunopathogenesis of SARS-CoV-2 
and addressing the benefits, challenges and 
considerations of neutralizing antibodies (NAbs).  

Similarity of SARS-CoV-2 and 
SARS-CoV in antigen and receptor 
recognition by host 

As shown in Figure 1, major structural proteins 
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of SARS-CoV-2 include the spike (S), membrane (M) 
and envelop (E) and nucleic capsid (N) proteins [8]. A 
coronavirus initiates cell fusion via attachment of the 
S protein with the receptor on the host cell surface. 
The viral nucleocapsid is delivered inside for 
subsequent replication. The S protein comprises two 
units, S1 and S2. The receptor-binding domain (RBD) 
within S1 directly interacts with host receptors [9]. 
Structural and functional analysis of the SARS-CoV-2 
shows that the SARS-CoV-2 S protein binds the 
Angiotensin-converting enzyme 2 (ACE2) receptor on 
human alveolar epithelial cells [10-12], suggesting 
SARS-CoV-2 uses the same receptor, ACE2, as 
SARS-CoV. However, the SARS-CoV-2 S protein 
binds ACE2 with higher affinity than SARS-CoV S 
[13]. The high affinity of the S protein for human 
ACE2 may lead to the great human-to-human 
transmission of SARS-CoV-2. Due to the key role of 
the S protein, it is the main target for antibody- 
mediated neutralization. 

Innate and adaptive responses of human 
to SARS-CoV-2 and SARS-CoV 

 The clinical spectrum of the outcome of 
COVID-19 is highly variable, from mild flu-like 
symptoms to severe pneumonia. It is critical to take 
insights into cellular and humoral responses in 
SARS-CoV-2-induced COVID-19 [14]. Elucidation of 
SARS-CoV-2 immunopathogenesis is useful for 
developing passive antibody therapy, designing 
vaccines, and understanding of clinical drug 
interventions. However, the systemic landscape of the 
immune responses in patients with COVID-19 is 
unclear. Because the clinical features and 

immunopathogenesis of SARS-CoV-2 pose 
similarities with SARS-CoV [15], knowledge learned 
from SARS-CoV has important implications for 
understanding this new coronavirus. 

Resistance to SARS-CoV infections is associated 
with both innate and adaptive immune responses 
[16]. The innate immune response to SARS-CoV has 
not been completely defined [17]. Some studies 
demonstrated that both macrophage and dendritic 
cell (DC) play the important roles for viral destruction 
and immune response induction in mucosal- 
associated lymphoid tissues [18]. Due to homeostasis, 
macrophage and DC as vehicles seemed to 
disseminate viruses through the efferent lymphatic 
system. Meanwhile, activation of DC and macrophage 
by SARS-CoV led to excessive pro-inflammatory 
cytokine responses [19]. A drastic elevation of 
inflammatory cytokines and chemokines was 
observed in the tissues and serum of SARS-CoV 
patients [20]. The levels of, IFN-γ, IL-1β IL-6, IL-12, 
IL-8, MCP-1 and IP-10 are generally enhanced in the 
early infection and subsequently reduced in the 
recovery stage. Uncontrolled systemic inflammation 
(known as cytokine storm) further resulted in illness 
severity. The similar symptom of cytokine storm was 
observed in SARS-CoV-2 infection. The inflammatory 
cytokines and chemokines (IL-1β, IFN-γ, IP-10, and 
MCP-1), which may lead to activated T-helper-1 (Th1) 
cell responses, were upregulated [21,22]. However, 
SARS-CoV-2 patients secreted excessive IL-4 and 
IL-10 that may suppress inflammation via T-helper-2 
(Th2) [14]. It differs from SARS-CoV infection. Further 
studies are necessary to elucidate innate responses in 
pathogenesis of SARS-CoV-2. 

 

 
Figure 1. Schematic representation of the coronavirus and spike protein. (A) The coronavirus structure. The viral surface proteins (spike, envelope and membrane 
glycoproteins) are embedded in a lipid bilayer envelope. (B) Comparison of the spike (S) proteins of SARS-CoV and SARS-CoV-2. RBD, receptor-binding domain; RBM, 
receptor-binding motif; HR1/2, heptad repeat 1/2. 
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The adaptive immune response mainly consists 
of cellular (T cell) and humoral (B cell) responses. T 
cell-mediated responses in SARS-CoV infection have 
been well elucidated [23]. Both CD4+ and CD8+ 
T-cells provided broad and long-term protection. 
CD4+ T cells promoted the proliferation of 
neutralizing antibodies, whereas CD8+ T cells were 
responsible for the destruction of viral infected cells. 
Although all SARS‐CoV surface proteins, including S, 
M, E, and N proteins were involved in T cell 
responses, S protein contributed to the most T-cell 
recognition epitopes. Overall frequency of CD8+T cell 
response predominates over CD4+T cell response. 
Lymphopenia occurred in both SARS-CoV and SARS- 
CoV-2 infections [14,24,25]. The reduction of CD4+ 
and CD8+ T cells is commonly associated with 
lymphopenia. It will be interesting to elucidate T-cell 
mediated response in SARS-CoV-2 infection that may 
provide important hints for the design of the vaccine 
composed of viral structural proteins. On the other 
hand, patients with SARS-CoV infection had the 
strong humoral immune response to SARS-CoV [26, 
27]. Serum IgG, IgM, and IgA responses to SARS-CoV 
appeared in patients after primary SARS infection 
[28]. Neutralizing IgGs played a major role in the 
neutralization of the SARS-CoV. IgGs reached the 
peak in serum during the convalescent phase and 
diminished after recovery [29]. Memory B cells still 
provided the long-term protection in associated with 
cellular immune responses [30]. Despite markedly 
reducing virus replication, anti-S protein neutralizing 
IgGs could be associated with fatal acute lung injury 
through promoting IL-8/MCP-1 production and 
inflammatory macrophage accumulation [31]. These 
studies may provide important implications for 
observing IgG response in patients with SARS-CoV-2. 

Advances in the development of 
neutralizing antibodies to SARS-CoV 

NAbs provide important specific immune 
defense against viral infections in patients [32] [33,34]. 
Numbers of antiviral NAbs have been developed in 
recent years, and some are now in clinical 

development. The role and importance of NAbs in 
protection from SARS-CoV infection has been 
thoroughly reviewed elsewhere [7,35-38]. Entry of 
SARS-CoV into the host cell is mediated by the 
attachment of S protein and ACE-2 receptor. The S 
protein is the major inducer of NAbs. Particularly, 
RBD within S1 unit is the most critical target for 
SARS-CoV NAbs [39]. Such NAbs can interrupt the 
interaction of RBD and its receptor ACE2. Most of 
NAbs have been identified to recognize RBD region 
[40-46]. Interestingly, some NAbs still showed to 
recognize epitopes on S2 unit [47], suggesting that 
other mechanisms could be involved in the 
neutralization. At last virus clearance was mediated 
by antibody-dependent opsonization or complement 
activation [7]. These NAbs against SARS-CoV are 
summarized in Table 1. 

Phage display has been used to identify 
neutralizing human monoclonal antibodies against 
SARS-CoV from both naïve and immune antibody 
libraries. The selected antibodies, 80R [40], CR3014 
[41], CR3022 [42], m396 [43], blocked the binding of S1 
domain and ACE2. 80R, CR3013 and m396 showed 
virus neutralization and prophylaxis capability in 
either vitro or animal models. Although CR3022 did 
not showed much neutralization alone, the mixture of 
CR3022 and CR3014 showed neutralization of 
SARS-CoV in a synergistic effect due to recognition of 
different epitopes on RBD [42]. A method for Epstein- 
Barr virus (EBV) transformation of human B cells was 
used to isolate NAbs. Six groups of NAbs, which were 
divided based on differential neutralization of SARS- 
CoV variants, have been successfully identified from 
memory B cells from SARS-CoV infected patients [30]. 
Furthermore, transgenic mice with human 
immunoglobulin genes have been used to produce 
NAbs against SARS-CoV by antigen immunization. 
Two NAbs, 201 and 68, were identified from 
transgenic mice [44,45]. They were effective for virus 
prophylaxis in animal models. On the other hand, 
several NAbs, B1 [46], 1F8 and 5E9 [47], against 
epitopes on SARS-CoV S2 still showed effectiveness in 
neutralization.

 

Table 1. Neutralizing antibodies against SARS-CoV 

Neutralizing antibody Identification Method Target Region Animal model Reference 
80R Phage display  S1 domain 426-492 Mouse [40] 
CR3014 Phage display S1 domain 318-510 Ferret  [41] 
CR3022 Phage display S1 domain 318-510 NA [42] 
m396 Phage display S protein Mouse [43] 
B1 Phage display S2 domain 1023-1189 NA [46] 
Group I (S132, S228.11)  EBV transformed B cells  N-terminal RBD  NA [30] 
Group II (S111.7, S224.17)  EBV transformed B cells  S1 domain 318-510 NA [30] 
Group III (S3.1, S127.6, S217.4, S222.1, S237.1)  EBV transformed B cells  S1 domain 318-510 Mouse (S.1) [30] 
Group IV (S110.4, S218.9, S223.4, S225.12, S226.10, S231.19, S232.17, S234.6)  EBV transformed B cells  S1 domain 318-510 NA [30] 
Group V (S124.5, S219.2)  EBV transformed B cells  ND NA [30] 
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Neutralizing antibody Identification Method Target Region Animal model Reference 
Group VI (S109.8, S215.17, S227.14, S230.15)  EBV transformed B cells  S1 domain 318-510 Mouse [30] 
201 HuMAb-Mouse®  S1 domain 490-510  Mouse [44, 45] 
68 HuMAb-Mouse® S1 domain 130-150  Mouse [44, 45] 
1F8 
 

XenoMouse® S2 domain HR1 NA [47] 

5E9 XenoMouse® S2 domain HR2 NA [47] 
 
 

 
Figure 2. Schematic mechanism of the neutralizing antibodies. Competition of the neutralizing antibody with the receptor (ACE2) for binding to the receptor-binding domain 
(RBD) of the SARS-CoV-2 Spike protein is shown. The protruding portion (violet) of RBD is both the ACE2 receptor-binding site and the antibody epitope. 

 

Perspectives on the development of 
neutralizing antibodies against 
SARS-CoV-2  

The simplest and most direct approach to 
combating SARS-CoV-2 during the outbreak would 
be to use plasma from the convalescent patients [48]. 
Polyclonal NAbs could be induced in some 
convalescent patients and will be effective in treating 
SARS-CoV-2 [12]. These NAbs can provide passive 
immune responses to viral infection. Indeed, both 
SARS and Ebola patients received the treatment of 
convalescent plasma [49,50]. However, the outcomes 
of passive plasma therapy are unpredictable due to 
variability of sera in different patients.  

Development of NAbs against SARS-CoV-2 is a 
relatively rapid approach to obtain the standardized 
agents that control re-emergence of COVID-19 [51]. 
The SARS-CoV-2 S protein is likely important target 
for developing NAbs to block binding and fusion of 
SARS-CoV-2 (Figure 2). SARS-CoV-2 seems to use the 
same cell entry receptor, ACE2, as the SARS-CoV 
because ACE2 shows binding to RBD of both SARS- 
CoV and SARS-CoV-2 [11]. However, a recent study 
demonstrates that SARS-CoV-2 S protein binds ACE2 
with higher affinity than SARS-CoV (10- to 20-folder) 
[13], suggesting its recognition to ACE2 could be 
different with SARS-CoV. Although SARS-CoV-2 
shows the high homology with SARS-CoV, antibody 

cross-reactivity is limited between the two virus S 
proteins. Several published SARS-CoV NAbs do not 
have appreciable binding to SARS-CoV-2 S protein 
[13,52]. A recent study shows that a SARS-CoV 
antibody, CR3022, binds to SARS-CoV-2 RBD [52], but 
its neutralization capability is uncertain. Cocktail of 
NAbs has showed the stronger neutralization than 
alone in treatment of both Ebola and SARS viruses 
[47,53]. This finding suggests that a cocktail antibody 
approach for SARS-CoV-2 could be undertaken. 
Therefore, it will be very meaningful to generate 
NAbs targeting different epitopes on SARS-CoV-2. 
Combination of several potent NAbs could decrease 
the probability for escape virus isolates with 
decreased sensitivity to neutralization.  

Computational simulation of antibody-antigen 
complexes has been used to guide the design of 
therapeutic antibodies [54-56]. Numbers of antibody 
structures (currently around 2,000 depositions) are 
available in the Protein Data Bank [PDB]. Based on 
these PDB data, the comparative model of an 
antibody onto the viral surface antigen can be 
predicted. The key residues between RBD and NAbs 
can be identified to provide important implications 
for the vaccines against SARS-CoV-2. The key 
residues of interface between an antibody and the 
antigen can be optimized to produce high affinity [57]. 
Several recent computer docking models have been 
used to predict the interaction between S protein and 
human ACE2 [10] or antibodies [52]. The studies 
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revealed the important discovery that SARS-CoV- 
specific CR3022 antibody could cross-react to SARS- 
CoV-2. 

Conclusion 
The availability of therapeutic NAbs against 

SARS-CoV-2 will offer benefits for the control of the 
current pandemic and the possible re-emergence of 
the virus in the future, and their development 
therefore remains a high priority. The efforts of NAb 
development will surely be an area of intense research 
in the coming months and even years. Currently, 
several strategies are used in the clinic or under 
development, such as viral-targeting therapeutics and 
host-targeting agents (such as interferons, 
glucocorticoids) for the treatment of COVID-19. As 
compared with these therapeutic strategies, NAbs 
appear to be more specific for virions. Understanding 
of action mechanisms of NAbs may provide valuable 
implications for the rapid development of antibody 
therapy and vaccine for SARS-CoV-2. However, the 
development of NAb-based therapeutics is a time- 
consuming and laborious process. To date, no NAb 
agents for either SARS-CoV or (Middle East 
Respiratory Syndrome Coronavirus) MERS-CoV are 
available in the market. Meanwhile, a note of caution 
is that the effect of antibody immune response in 
protecting against pulmonary pathogenesis of 
SARS-CoV is controversial [31]. Some patients who 
died of SARS showed the strong NAb responses and 
pulmonary proinflammatory accumulation, 
suggesting NAbs could be associated with fatal acute 
lung injury. Therefore, it is important to take insight 
into humoral and cellular responses of SARS-CoV-2 
when antiviral immunotherapy is developed.  
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