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Abstract

lon channels and transporters move ions across membrane barriers and are essential for a host of
cell functions in many organs. They conduct K*, Na* and CI~, which are essential for regulating
the membrane potential, H* to control intra- and extracellular pH and divalent cations such as
Ca%*, Mg?* and Zn2*, which function as second messengers and cofactors for many proteins.
Inherited channelopathies due to mutations in ion channels or their accessory proteins cause a
variety of diseases in the nervous, cardiovascular and other tissues, but channelopathies that affect
immune function are not as well studied. Mutations in ORA/Z and ST/M1 genes that encode the
Ca?* release-activated Ca2* (CRAC) channel in immune cells, the Mg2* transporter MAGT1 and
the CI~ channel LRRCB8A all cause immunodeficiency with increased susceptibility to infection.
Mutations in the Zn2* transporters SLC39A4 (ZIP4) and SLC30A2 (ZnT2) result in nutritional
Zn2* deficiency and immune dysfunction. These channels, however, only represent a fraction of
ion channels that regulate immunity as demonstrated by immune dysregulation in channel
knockout mice. The immune system itself can cause acquired channelopathies that are associated
with a variety of diseases of nervous, cardiovascular and endocrine systems resulting from
autoantibodies binding to ion channels. These autoantibodies highlight the therapeutic potential of
functional anti-ion channel antibodies that are being developed for the treatment of autoimmune,
inflammatory and other diseases.

Introduction

lon channels and transporters (ICT) move ions across hydrophobic lipid membrane barriers
including the plasma membrane (PM) and membranes of intracellular organelles such as
mitochondria, the endoplasmic reticulum (ER) and vacuoles. The passive transport of ions
through ion channels is driven by concentration and electrical gradients between two
compartments (e.g. the intra- and extracellular space). By contrast, ion transporters, pumps
and exchangers move ions actively with or against their gradient by using energy provided
by the hydrolysis of ATP or coupling transport to the potential of other ion gradients. The
mammalian genome encodes for more than 600 ICT and accessory proteins that conduct
Ca?*, Mg?*, Zn2*, Fe3*, FeZ*, Cu2*, Mn2*, K*, Na*, H*, CI~, HCO3™ and trace elements,
which play important roles in the regulation of cell function. Relatively few ICTs have
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known roles in the immune system based on genetic or solid pharmacological evidence
(Tables 1 and 2)1 2, although it is likely that many more channels operate in immune cells
and control their function.

Channelopathies are a heterogeneous group of diseases caused by the dysfunction of ICTs
due to mutations in their pore-forming alpha subunits or accessory proteins that regulate
their function. Channelopathies have been widely studied in many organ systems and linked
to diseases such as epilepsy, ataxia or migraine in the nervous system, Brugada syndrome,
long QT syndrome and atrial fibrillation in the heart, cystic fibrosis, neonatal forms of
diabetes mellitus and polycystic kidney disease, to name a few3. In the immune system, only
a few inherited ion channelopathies affecting ICTs conducting Ca2*, Mg?*, Zn2* and CI~
have been reported so far (Table 2). Their dysfunction is associated with immunodeficiency
and in some cases autoimmunity and hematologic malignancies!: 2 4. Disease-causing
autoantibodies binding to ICTs in variety of organs can be considered as secondary
(auto)immune channelopathies and will be discussed briefly at the end of this review®.

ORAI1, STIM1 and CRAC channelopathy

The Ca?* release-activated Ca2* (CRAC) channel is the main Ca2* influx channel in T cells
and most other immune cells®: 6. 7: 8, Besides its important role in immunity, the CRAC
channel mediates Ca2* influx in many other cell types and tissues owing to its ubiquitous
expression. The highly Ca2* selective CRAC channel is composed of a hexameric complex
of ORAI1 proteins or its homologues ORAI2 and ORAI3 (Figure 1) 9. ORAI proteins,
named after the horae Eunomia, Dike, Eirene in Homer’s //iad, who were the custodians of
the gates of Olympus??, are highly conserved small tetraspanning plasma membrane
proteinstl: 12. 13 They contain intracellular N- and C-termini, which allow them to bind to
stromal interaction molecule (STIM) 1 and STIM2 and other accessory proteins that
modulate CRAC channel function® 4. STIM1 and STIM2 are single-pass transmembrane
proteins with an ER lumenal N terminus and cytoplasmic C terminus. They respond to a
reduction in the Ca2* concentration in the ER ([Ca?*]gR) and the dissociation of Ca2* from
their EF hand Ca2* binding domains with extensive conformational changes, which allow
them to interact with ORAI channels and phospholipids in the plasma membrane within ER-
PM junctions. The molecular choreography of STIM activation and the subsequent
activation of ORAI channels has been extensively reviewed elsewhere8: 15 16,

The Ca?* influx mediated by CRAC channels, called store-operated Ca2* entry (SOCE)
because of its regulation by [Ca2*]gg, is initiated by engagement of immunoreceptors such
as the TCR, BCR and FcR and subsequent activation of phospholipase Cy (PLC+y) and IP3
production, which results in Ca%* release from the ER through inositol-1,4,5-trisphosphate
(1P3) receptor channels and activation of STIM1 and STIM2 (Figure 1). Ca2* signaling
following SOCE leads to the activation of many Ca?* regulated enzymes and transcription
factors among which the serine/threonine-phosphatase calcineurin and the nuclear factor of
activated T cells (NFAT) have prominent roles in T cell function and

immunity17. 18.19.20. 21 Ap important function of the SOCE-calcineurin-NFAT signaling
pathway is the transcriptional regulation of gene expression. SOCE controls the expression
of cytokines, transcription factors, glycolytic enzymes and mitochondrial genes that control
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a variety of cellular processes including T cell differentiation, proliferation and
metabolism?2: 23. 24,25 Besides gene regulation, SOCE also controls a multitude of other
immune cell functions such as the degranulation of cytotoxic vesicles by CD8* T cells and
NK cells or the production of reactive oxygen species (ROS) by

neutrophils26: 27,28, 29,30, 31 |t therefore comes as no surprise that defects in CRAC channel
function have profound effects on immunity.

Loss-of-function (LOF) mutations in ORAIL or STIM1 genes that abolish CRAC channel
function and SOCE in T cells, NK cells and other immune and non-immune cells cause a
unique disease syndrome called CRAC channelopathy (Table 2)11.32.33,34,35,36 |t js
characterized by combined immunodeficiency (CID), autoimmunity and non-immune
symptoms including congenital muscular hypotonia and ectodermal dysplasia with
anhidrosis and amelogenesis imperfecta® 37. CID in most patients manifests with severe
viral, bacterial and fungal infections in the first months or years of life and generally
requires treatment by hematopoeitic stem cell transplantation. Common pathogens include
cytomegalovirus (CMV), Epstein-Barr virus (EBV), Candida albicans, Streptococcus
pneumonia. Uncontrolled viral infections with EBV and human herpes virus 8 have resulted
in EBV* B cell lymphoma and Kaposi sarcoma in a subset of patients with CRAC
channelopathy32: 34. 38 Unlike severe combined immunodeficiency (SCID), ORAI1 and
STIML1 deficient patients have mostly normal T, B and NK cells counts and lymphocyte
development seems to proceed normally despite the absence of SOCE# 35, However, some
unconventional lymphocyte populations are altered in CRAC-deficient patients including
iNKT cells, y8 T cells and in particular Foxp3™* Treg cells33 34 35, Abnormal iNKT and y&
T cells may contribute to the CID phenotype. The main cause of CID in patients with LOF
mutations in ORA/I and S7T/M1, however, is impaired T cell function. In the absence of
SOCE, CD4* and CD8* T cells fail to proliferate and do not produce a large variety of
cytokines required for T cell effector function and differentiation. The proliferation defect is
not due to lack of the growth cytokine IL-2 but caused by an impaired switch of SOCE-
deficient T cells to aerobic glycolysis, which is required to support the anabolic metabolism
of stimulated T cells that allows them to grow and proliferate3®. In the absence of SOCE and
NFAT activation, T cells fail to express glucose transporters, glycolytic enzymes and
transcription factors that control their expression and they do not activate the AKT-mTOR
pathway?3. The role of SOCE in metabolism is not limited to glycolysis, but extents further
to the regulation of mitochondrial function and lipid metabolism25. CID in CRAC
channelopathy is in part caused by impaired production of antigen-specific antibodies after
vaccination or infection, despite overall normal or elevated serum immunoglobulin

levels* 3335, Studies in CRAC channel-deficient mice show that defective seroconversion
results from the attenuated differentiation and function of follicular T helper (Tfh) cells that
promote B cell maturation in the germinal centers (GC) of secondary lymphoid organs?*. T
cell-specific deletion of SOCE in mice strongly impaired antibody responses to
immunization with T-dependent antigens and after viral infection?4.

Besides CID, many CRAC-deficient patients present with lymphoproliferation and
autoimmunity characterized by autoimmune hemolytic anemia (AIHA) and
thrombocytopenia associated with anti-erythrocyte, anti-platelet and other

autoantibodies* 35. The seemingly paradoxical combination of CID and autoimmunity is not
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unique to patients with ORAIL or STIM1 mutations but is common to many primary
immunodeficiencies (P1Ds)*0. Autoantibody production in CRAC channelopathy patients
likely results from impaired development or function of follicular Treg (Tfr) cells that
suppress the GC reaction and prevent the formation of autoantibodies*! 42. Whereas Tfr
cells are difficult to study in patients due to their paucity in the blood, mice with T cell- or
Treg-specific deletion of Stim1 and StimZ2 are almost completely devoid of CXCR5™ Tfr
cells in their lymph nodes and showed spontaneous development of large GCs and
autoantibody production?4. These findings indicate that SOCE is required for the
differentiation of thymus-derived Treg cells into Tfr cells. A strong reduction of effector
Treg (eTreg) cells was observed in ORAI1-deficient patients, likely accounting for their
autoantibody production. Taken together, SOCE plays a dual role in controlling the function
of Tfh cells that are required for the production of pathogen-specific antibodies and the
function of Tfr cells that prevent spontaneous autoantibody production. Intriguingly, B cell-
specific deletion of SOCE had no effect on antibody production after immunization*3,
indicating that the humoral immunodeficiency in CRAC deficient patients is due to impaired
T cell but not B cell function.

Non-immunological symptoms of CRAC channelopathy include ectodermal dysplasia and
anhidrosis (EDA), constituting a new form of EDA with immunodeficiency (ID) that is
distinct from EDA-ID due to mutations in /KBKG and NFKBIA genes in the nuclear factor
kB (NF-kB) signaling pathway3> 44, Anhidrosis in CRAC channel-deficient patients is
caused by impaired sweat gland function because SOCE is required for the opening of the
Ca?* activated CI~ channel TMEM16A (or Anol), which mediates CI~ secretion?®.
Ectodermal dysplasia is mainly characterized by hypocalcified amelogenesis imperfecta due
to impaired dental enamel formation and calcification?®. It is noteworthy that gain-of-
function (GOF) mutations in ORAIL and STIM1 have been reported that cause constitutive
Ca?" influx. They cause disease with overlapping phenotypes, Stormorken syndrome and
tubular aggregate myopathy, but are not associated with an overt immune phenotype®.

MAGT1 and XMEN syndrome

Mg?2* is the most abundant divalent cation in immune cells and important for their
proliferation and survival®’. Several Mg2* channels and transporters are expressed in
immune cells including SLC41A1, SLC41A2, TRPM6, TRPM7 and MAGT1, but only the
last two have so far been shown to regulate lymphocyte development and function®’.
TRPM?7 is a non-selective, Mg2*-permeable channel that also conducts other divalent cations
including Ca2*, Zn?*, and Ni2*. It is ubiquitously expressed and thought to regulate cellular
Mg?2* homeostasis and thereby survival and proliferation?8. Deletion of TRPM?7 in murine T
cells profoundly impairs T cell development, which suggests that Mg2* influx through
TRPMY regulates thymocyte survival and/or proliferation, an interpretation that is
complicated, however, by the fact that Mg2* influx and cellular MgZ* content in thymocytes
were normal?®. Since TRPM?7 is also a functional serine threonine kinase, it remains
possible that the function of TRPM7 in T cell development depends not on its channel but
rather its kinase activity. A recent study using mice with macrophage specific deletion of
TRPM?7 showed that the channel mediates cytosolic Ca2* elevations essential for LPS-
induced macrophage activation and production of pro-inflammatory cytokines like IL-1p5C.
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Human diseases linked to TRPM7 have not been identified yet. In contrast to TRPM7,
MAGT1 is a highly Mg?* selective transporter with a tetraspanning PM topology (Figure 1).
Together with MAGT2, which is much less selective for Mg2* and can also conduct other
bivalent cations such as FeZ*, Mn?* and Cu?*, MAGT1 constitutes a new family of
transporters without major similarities to other ICTs except the non-selective Mg2*
transporter TUSC3%1. 52,

Much of what we know about the physiological role of MAGT1 in immune function comes
from patients with LoF mutations in MAGT1 who suffer from X-linked immunodeficiency
with magnesium defect, EBV infection and neoplasia (XMEN) disease (Table 2)°1
(reviewed in detail in 2 53.54.55) The disease is dominated by recurrent and persistent
infections with EBV that often cause EBV-associated B cell lymphomas. Patients show
CD4" lymphopenia and an inverted CD4:CD8 ratio that is due to diminished thymic
production of CD31* naive T cells®* 55, The immunodeficiency in XMEN patients is mainly
caused by impaired function of NK cells and cytotoxic CD8* T cells®* 55, NK cells of
XMEN patients lack expression of NKG2D, an activating NK cell receptor that is required
for their antiviral and antitumor immunity. TCR stimulation was shown to result in Mg2*
influx, which is abolished in T cells of XMEN patients. While MAGT1 deficiency did not
alter the total intracellular Mg2* content (95% of intracellular Mg2* is bound to phosphates
and protein molecules), it impaired T cell activation by reducing the activation of PLC+y1,
the production of 1P3 and the subsequent SOCE via CRAC channels (Figure 1). Defective
SOCE in XMEN patients was only observed in T but not NK cells, which may be due to the
effects of Mg2* on the activation of the T cell-specific Tec kinase ITK6. Thus, it is likely
that some defects in XMEN patients are a consequence of impaired SOCE, which is also
required for T and NK cell function. The T cell activation defect in MAGT 1-deficient
patients can be overcome by strong and prolonged TCR stimulation®8, which may explain
why XMEN patients do not develop other life-threatening infections besides EBV as seen in
patients with CRAC channelopathy. Intriguingly, Mg?* supplementation of T cells and NK
cells from XMEN patients elevated their free intracellular Mg2* levels, restored NKG2D
expression on NK cells and significantly improved their cytotoxic function in vitrc®L,
Furthermore, dietary supplementation of two XMEN patients with Mg2* L-threonate was
furthermore able to control of their EBV viremia®. Although XMEN patients provided clear
evidence that MAGT1 and Mg?2* signaling are critical for NK and CD8* T cell function, the
molecular mechanisms by which TCR stimulation activates MAGT1 or the mechanism of
Mg?2*-dependent activation of PLCy1 and other signaling pathways remains to be
elucidated.

LRRCS8A and Agammaglobulinemia

Leucine-rich repeat containing 8A (LRRCB8A, also known as SWELL1) was identified by
two siRNA screens as an essential component of the volume-regulated anion channel
(VRAQC). It mediates CI~ secretion after cell swelling in response to changes in intracellular
osmolytes or decreased extracellular osmolarity®” 8, LRRC8A is a tetraspanning plasma
membrane protein that together with one or more of its four homologues (LRRC8B-E)
forms a channel complex (likely a hexamer) (Figure 1)°°. Mammalian LRRC8A contains 17
leucine-rich repeats at its C terminus that were shown to mediate signaling and activation of
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T cells®0. 61.62 | RRC8A is expressed in T and B cells and has important roles in adaptive
immunity.

LRRCB8A was first identified as a novel gene mutated in a 17 year-old girl who was
heterozygous for a balanced chromosomal translocation, t(9;20)(g33.2;912), that replaced
two-and-a-half LRR domains by 35 novel amino acids encoded by intronic nucleotides and
likely acts as a dominant negative on VRAC function®L. The girl presented congenital
agammaglobulinemia and B cell deficiency (Table 2)61. Expression of the truncated form of
LRRCB8A in murine bone-marrow cells and Lrrc8a-deficient mice confirmed its important
role in B cell development and antibody production8L: 82, £ rrc8a~~ animals not only showed
increased prenatal and postnatal mortality, growth retardation, multiple tissue abnormalities
and severely reduced peripheral B cell numbers, but also revealed a role of LRRC8A in
thymocyte development and survival not found in human patients®2. A spontaneous insertion
mutation of Lrrc8ain mice (ebo/ebo) that causes a frameshift results in the expression of a
truncated LRRC8A protein with its 15 C-terminal LRR domains missing (Table 1)6. T cells
from ebo/ebo mice have abolished VRAC currents, suggesting that the LRR domains are
required for channel function. However, T and B cell development, antibody responses after
immunization as well as proliferation and cytokine production by T cells were normal®°.
These data suggest that the channel function of LRRCB8A is dispensable for lymphocyte
development and function89. The molecular mechanisms, including the relationship of the
channel pore and LRR domains, by which LRRC8A regulates lymphocyte development and
function require further study.

Zinc transporters, zinc deficiency and infections

Zn2* s critical for normal immune function and nutritional Zn2* deficiency in developing
countries is a leading cause of immunodeficiency due to impaired innate and adaptive
immune responses®3: 84, Zn2* levels in cells are regulated by two families of Zn2*
transporters, SLC30 (ZnT) and SLC39 (ZIP) proteins®®. Two human diseases characterized
by Zn2* deficiency and impaired immune function have been linked to mutations in these
gene families (Table 2). Acrodermatitis enteropathica (AE) is caused by LoF mutations in
SLC39A4 encoding the intestinal Zn2* transporter ZIP4 and resulting in an inability to
resorb intestinal Zn2*. The disease resembles in many aspects systemic Zn2* malnutrition
and manifests with diarrhea, skin inflammation and blistering, alopecia, abnormal leukocyte
populations and an increased susceptibility to infections®4. Conditional deletion of S/c39a4
in the intestinal epithelium of mice showed an important role of ZIP4 in Zn2* uptake from
the gut, maintenance of the intestinal stem cell niche and function of the gut mucosa,
resulting in systemic Zn%* deficiency but the effects on immune function were not tested56.

Transient neonatal Zn?* deficiency is due to heterozygous mutations in SLC30A2 that
encodes ZnT2. It transports Zn2* into lysosomes, and mutations result in decreased Zn2*
levels in breast milk and nutritional Zn2* deficiency of babies. Thus, immunodeficiency
caused by mutations in ZnT2, similar to ZIP4, is not due to its role in immune cell function
but can be attributed to systemic Zn2* deficiency. Nevertheless, genetic deletion of Zn2*
transporters such as ZIP3, ZIP6, ZIP8, ZIP10 and ZnT5 in mice indicates that ZIP and ZnT
proteins have important roles in immune cell development and function. Mice lacking ZIP3
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have reduced CD4* CD8™ double-positive (DP) but increased CD4* and CD8* single
positive thymocytes suggesting that ZIP3 regulates T cell development®’. However, deletion
of ZIP3 does not alter intracellular levels of Zn?* and trace metals nor did it affect the
expression of two known Zn2*-responsive genes8”. Stimulation of mature T cells was shown
to cause Zn%* influx via ZIP6. The increase in intracellular Zn2* concentration inhibits the
recruitment of the phosphatase SHP1 and results in sustained Ca2* influx and T cell
activation58, The lysosomal transporter ZIP8 is upregulated after T cell activation and its
knockdown by RNAI attenuated IFN-y and perforin expression in human T cells. In B
cells, genetic deletion of ZIP10 reduces intracellular Zn?* levels, increases caspase
activation and apoptosis, resulting in impaired B cell development’®. Residual ZIP10-
deficient B cells proliferated poorly and had decreased GC formation and T cell-dependent
and T cell-independent antibody production after immunization, suggesting that Zn2* uptake
via ZIP10 regulates humoral immunity’?.

Two members of a family of transmembrane channel-like (TMC) proteins, TMC6 (EVER1)
and TMC8 (EVER2) were shown to form a complex and interact with ZnT1 in the ER
membrane and facilitating Zn2* uptake into the ER (Table 2)72. TMC8 prevented the influx
of free Zn?* into the nucleus and inhibited the activation of the Zinc-regulated transcription
factor MTF172. Autosomal recessive mutations in TMC6 and TMC8 are associated with
epidermodysplasia verruciformis (EV), a dermatosis characterized by abnormal
susceptibility to human papillomaviruses (HPVs) and a high rate of progression to squamous
cell carcinoma on sun-exposed skin. Given the role of TMC6 and TMC8 in Zn?* uptake into
the ER, their mutation has been suggested to result in increased cytosolic Zn?*
concentrations and enhanced transcription of Zn2*-dependent viral proteins in
keratinocytes’2. TMC8 is also expressed in T cells but is downregulated after TCR
stimulation, resulting in increased concentrations of free cytosolic Zn?* similar to primary T
cells from EVER2-deficient patients’3. Increased Zn2* impairs T cell activation and
proliferation, but the impact of this T cell defect on EV pathogenesis remains to be
elucidated. Despite these tantalizing findings, many questions about the role of ZIP, ZnT and
TMC proteins in Zn?* conductance and innate and adaptive immune function remain
including the molecular mechanisms by which they are activated and how they regulate
immune cell function.

Autoantibody-mediated ion channelopathies

Human LoF mutations in ion channels that impair immune cell function are relatively rare.
However, the immune system can itself affect ion channel and cell function through the
formation of autoantibodies (AA)3. AA binding to ion channels on the cell membrane causes
disease by a number of mechanisms including blocking ion conductance, causing
internalization of channel proteins or through complement fixation with subsequent
inflammatory cell damage. The diseases associated with autoantibodies targeting ion
channels predominantly affect the nervous system and skeletal muscle. Examples are
diseases of neuromuscular transmission associated with muscle weakness such as
myasthenia gravis due to AA against the nicotinic acetylcholine receptor (nAChR) or the
receptor tyrosine kinase MuSK that facilitates NAChR clustering’4, Lambert-Eaton
syndrome due to AA against P/Q-type voltage-gated Ca%* channels’®, and Isaac and Morvan
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syndromes, which represent a form of neuromyotonia caused by AA against components of
the voltage-gated K* channel (VGKC) complex’®. AA against the neuronal N-methyl-D-
aspartate (NMDA\) receptor are responsible for the most common form of AA-mediated
encephalitis that manifests with severe CNS and autonomic nervous system symptoms?’.
Anti-NMDA receptor AA can also be found in patients with SLE, where they cause
neurological and psychological symptoms. Apart from the CNS and skeletal muscle,
examples of other organs affected by AA against ion channels are the heart in patients with
congenital heart block (targeting L- and T-type voltage-gated Ca2* channels)’® and
cardiomyopathy (L-type Ca2* channels, K* channels) and skin in pemphigus vulgaris
patients (NAChR)”®. For more detailed reviews of AA-mediated channelopathies see3 °. It is
noteworthy that the production of AA against ion channels is often the consequence of
paraneoplastic syndrome caused by tumors including thymoma, small cell lung cancer or
ovarian teratoma3: 80,

Conclusions Outlook

Although the number of ion channels mutated in human patients with immune
channelopathy syndromes are limited, genetic deletion of ion channels in mice has taught us
that many more ion channels play important roles in regulating innate and adaptive immune
responses than previously anticipated. Equally important, the fact that autoantibodies can
bind to ion channels and interfere with their function indicates that the deliberate use of ion
channel selective functional antibodies is a promising approach to the treatment of diseases
in which ion channels contribute to pathophysiology. Indeed, functional monoclonal
antibodies (mAb) are emerging as a promising new drug family for the therapeutic
modulation of ion channels following on the heels of mAb against other protein classes that
is continuing to revolutionize the treatment of cancer, autoimmunity and other diseases8?.
Generating inhibitory mAb against ion channels is generally more challenging compared to
mAb against other protein classes due to the complex membrane topology and small
extracellular loop domains of many channels82. mAb against about half a dozen ion
channels have been generated that block channel function and are effective in preclinical
studies®2. Two of these channels, P2RX7 and ORAI1, have important roles in immune cell
function and immunity (Tables 1 and 2). Two mAbs against human ORAI1 were shown to
block CRAC currents, SOCE and cytokine production by PBMC and attenuate GvHD in a
preclinical xenograft model83: 84, Similarly, mAb and nanobodies antagonizing P2X7
function on mast cells, macrophages and T cells ameliorated immune pathology in mouse
models of colitis, glomerulonephritis and contact hypersensitivity8>: 86, While no therapeutic
mADb targeting ion channels have been approved for clinical use yet, preclinical studies with
mADb are promising and a variety to technological platforms are available to efficiently
produce functional mAb against ion channels that may be useful to treat autoimmune
disease.
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Highlights
Channels and transporters for Ca2*, Mg2*, Zn?* and other ions regulate immunity

Mutations in ORAI1 and STIM1 abolish Ca2* influx and cause CRAC
channelopathy

XMEN disease results from mutations in the Mg?* transporter MAGT1

Loss of LRRC8A function blocks lymphocyte development and causes
agammaglobulinemia

Dual role of antibodies as the cause of channelopathy and a new class of
therapeutics
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Figure 1. Mutations interfering with the function or expression of ion channels (ORAI1, STIM1,
LRRCS8A) or transporters (MAGTL1) in T cells cause channelopathies and immunodeficiency

T cell receptor (TCR) stimulation activates the kinases Lck and ZAP-70 and phospholipase
Cy1, resulting in the hydrolysis of PIP; into the second messengers inositol-1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). IP3 binding to 1P3 receptor channels leads to
Ca?" release from the endoplasmic reticulum (ER). The decrease in the ER Ca2*
concentration ([Ca?*]gR) activates stromal interaction molecules 1 (STIM1) and STIM2,
which subsequently bind to and open Ca2* release-activated Ca?* (CRAC) channels formed
by ORAI1 and ORAI2 proteins in the PM. The resulting influx of extracellular Ca?* is
called store-operated Ca2* entry (SOCE). Free cytosolic Ca%* is pumped back into ER Ca2*
stores by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). LoF mutations
in ORA/Ior STIMI genes cause CRAC channelopathy with impaired T and NK cell
function. TCR stimulation also activates the Mg?* transporter (MAGT1) that mediates Mg2*
influx into T cells and promotes activation of PLCy1, SOCE and expression of NKG2D.
The mechanisms by which TCR stimulation activates MGAT1 and how Mg2* causes PLCy1
activation are not well understood (indicated by question marks). LoF mutations in the
MAGT1 gene cause X-linked immunodeficiency with Mg2* defect, EBV infection and
neoplasia (XMEN) disease. LRRCB8A is a volume-regulated anion channel (VRAC) that
conducts CI™ and is required for the regulatory volume decrease after cell swelling as well as
T and B cell development. LoF mutations in LRRC8A cause agammaglobulinemia. For
details see text.
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