METHODS AND COMPOSITIONS FOR CHIMERIC CORONAVIRUS SPIKE PROTEINS

(71) Applicant: The University of North Carolina at Chapel Hill, Chapel Hill, NC (US)

(72) Inventors: Ralph Baric, Haw River, NC (US); Sudhakar Agnihotram, Ellicott City, MD (US); Boyd Yount, Hillsborough, NC (US)

(73) Assignee: The University of North Carolina at Chapel Hill, Chapel Hill, NC (US)

(21) Appl. No.: 15/124,992

(22) PCT Filed: Mar. 20, 2015

(36) PCT No.: PCT/US2015/021773

§ 371 (c)(1). (2) Date: Sep. 9, 2016

(87) PCT Pub. No.: WO2015/143335

PCT Pub. Date: Sep. 24, 2015

(65) Prior Publication Data

US 2017/0096455 A1 Apr. 6, 2017

Related U.S. Application Data

(60) Provisional application No. 61/968,279, filed on Mar. 20, 2014.

(51) Int. Cl.

C07K 14/005 (2006.01)
C12N 7/00 (2006.01)
A61K 39/00 (2006.01)
A61K 39/205 (2006.01)
A61K 39/350 (2006.01)
A61K 45/06 (2006.01)
C07K 14/005 (2006.01)
C12N 7/00 (2006.01)
A61K 39/00 (2006.01)

U.S. Cl.

CPC C07K 14/005 (2013.01); A61K 39/12 (2013.01); C07K 16/10 (2013.01); C12N 7/00 (2013.01); A61K 2039/0525 (2013.01); A61K 2039/0528 (2013.01); A61K 2039/70 (2013.01); C07K 2317/34 (2013.01); C07K 2317/76 (2013.01); C12N 2770/0202 (2013.01); C12N 2770/0303 (2013.01); C12N 2770/0361 (2013.01); C12N 2770/0363 (2013.01)

(58) Field of Classification Search

See application file for complete search history.

ABSTRACT

The present invention provides compositions and methods comprising a chimeric coronavirus spike protein.
OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

(56) References Cited

OTHER PUBLICATIONS

GenBank Accession No. DQ181770.2, "TGEV virulent Puddle, complete genome", NCBI, 12 pages, Apr. 29, 2011.

GenBank Accession No. DQ181782.2, "TGEV Miller M60, complete genome", NCBI, 12 pages, Apr. 29, 2011.

GenBank Accession No. KC962433.1, "Transmissible gastroenteritis virus isolate TGEV-HX, complete genome", NCBI, 11 pages, Apr. 1, 2015.

GenBank Accession No. KC790371.1, "Transmissible gastroenteritis virus isolate ZHI spike protein mRNA, complete cds", NCBI, 3 pages, May 21, 2013.

GenBank Accession No. JQ693052.1, "Transmissible gastroenteritis virus isolate KT3 spike glycoprotein (S) gene, complete cds", NCBI, 3 pages, Mar. 22, 2013.

GenBank Accession No. JQ693051.1, "Transmissible gastroenteritis virus isolate KT2 spike glycoprotein (S) gene, complete cds", NCBI, 3 pages, Mar. 22, 2013.

GenBank Accession No. JQ693050.1, "Transmissible gastroenteritis virus isolate DAE spike glycoprotein (S) gene, complete cds", NCBI, 3 pages, Mar. 22, 2013.

GenBank Accession No. NC_010437.1, "Bat coronavirus 1A, complete genome", NCBI, 12 pages, Mar. 28, 2016.

GenBank Accession No. NC_010438.1, "Bat coronavirus HKU8, complete genome", NCBI, 13 pages, Mar. 28, 2016.

(56) References Cited

OTHER PUBLICATIONS

GenBank Accession No. F3687473.1, “Porcine epidemic diarrhea virus isolate CPEI074 membrane protein (M) gene, complete cds”, NCBI, 2 pages, Apr. 6, 2011.

GenBank Accession No. F3687470.1, “Porcine epidemic diarrhea virus isolate PFFI014 membrane protein (M) gene, complete cds”, NCBI, 2 pages, Apr. 6, 2011.

GenBank Accession No. F3687453, “Porcine epidemic diarrhea virus isolate e1642 membrane protein (M) gene, complete cds”, NCBI, 2 pages, Apr. 6, 2011.

GenBank Accession No. F3687450.1, “Porcine epidemic diarrhea virus isolate BI98I membrane protein (M) gene, complete cds”, NCBI, 2 pages, Apr. 6, 2011.

OTHER PUBLICATIONS

Recombinant S Gene Constructs

Boundaries of each antigen in the Chimera Mix

SARS-CoV RBD aa 322-500
HKU3 Spike aa 492-842
HKU3 Spike aa 842-1242

Fig. 2
Fig. 6 (cont’d.)
- nsp5, S, and M common to MA 15

* Identifies mutation spectra for cross-species transmission

* Sequencing in progress
Recombinant S Gene Constructs

Boundaries of each antigen in the Chimera Mix

MERS-CoV Spike

BtCoV HKU4.2 Spike

HKU 4.2 Spike aa 1-371

HKU 4.2 Spike aa 593-983

HKU 4.2 Spike aa 367-588

MERS-CoV RBD aa 1-371

MERS-CoV RBD aa 367-588

BtCoV HKU 5.5 Spike aa 984-1353

BtCoV HKU 5 Spike

Chimeric Antigen 2C

Fig. 9
Fig. 11
Fig. 12
Fig. 13
A. BtSARS.HKU3 genomes 1-3
 Subgroup 2b
 SARS-CoV reps from All phases/civets/dogs

B. Mock CHIMERA S SARS-CoV S Urbani S
 α Chimera S

C. Recombinant S Gene Constructs

 SARS-CoV (Urbani)'
 BtCoV HKU3'
 BtCoV HKU3 Spike SARS-CoV RBD
 BitCoV HKU3 Spike
 BitCoV 279 Spike
 Ectodomain RBD S1/S2 S2/I1
 Chimera S
 BitCoV/279/04-S

Fig. 14
Fig. 15
Virus serial passaged in mice 10x to become virulent

Fig. 16
Fig. 17
Fig. 18

A.

![Graph showing percentage starting weight against days post infection for different samples including SARS-CoV S, BtCoV HKU 3S, BtCoV 279 S, Mock, and Chimera S.]

B.

![Graph showing viral titers (pfu/g lung) for different vaccines including SARS-CoV S, BtCoV HKU 3S, BtCoV 279 S, Mock, and Chimera S.]

Vaccines: SARS-CoV S, BtCoV HKU 3S, BtCoV 279 S, Mock, Chimera S.
METHODS AND COMPOSITIONS FOR CHIMERIC CORONAVIRUS SPIKE PROTEINS

STATEMENT OF PRIORITY

This application is a 35 U.S.C. §371 national phase application of International Application Serial No. PCT/US2015/021773, filed Mar. 20, 2015, which claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Application Ser. No. 61/968,279, filed Mar. 20, 2014, the entire content of each of which is incorporated by reference herein.

STATEMENT OF FEDERAL SUPPORT

This invention was made with government support under Grant No. U54AI057157 awarded by the National Institutes of Health. The government has certain rights in the invention.

STATEMENT REGARDING ELECTRONIC FILING OF A SEQUENCE LISTING

A Sequence Listing in ASCII text format, submitted under 37 C.F.R. § 1.821, entitled 5470-672_ST25.txt, 90,897 bytes in size, generated on Dec. 9, 2016 and filed via EFS-Web, is provided in lieu of a paper copy. This Sequence Listing is hereby incorporated by reference into the specification for its disclosures.

FIELD OF THE INVENTION

The present invention relates to methods and compositions comprising a chimeric coronavirus spike protein for treating and/or preventing a disease or disorder caused by a coronavirus infection.

BACKGROUND OF THE INVENTION

Updated approaches are needed to rapidly respond to new emerging diseases, especially early in the epidemic when prompt public health intervention strategies can limit mortality and epidemic spread. In particular, emerging respiratory coronaviruses offer a considerable threat to the health of global populations and the economy. Coronaviruses (CoVs) constitute a group of phylogenetically diverse enveloped viruses that encode the largest plus strand RNA genomes and replicate efficiently in most mammals. Human CoV (HCoVs-229E, OC43, NL63, and HKU1) infections typically result in mild to severe upper and lower respiratory tract disease. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emerged in 2002-2003 causing acute respiratory distress syndrome (ARDS) with 10% mortality overall and up to 50% mortality in aged individuals. Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) emerged in the Middle East in April of 2012, manifesting as severe pneumonia, acute respiratory distress syndrome (ARDS) and acute renal failure. The virus is still circulating and has been shown to have a mortality rate of ~49%. Platforms for generating reagents and therapeutics are needed to detect and control the emergence of new strains, especially early in an outbreak prior to the development of type specific serologic reagents and therapeutics.

The present invention overcomes previous shortcomings in the art by providing methods and compositions comprising a chimeric coronavirus spike protein for treating and/or preventing diseases and disorders caused by a coronavirus.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides a chimeric coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes the receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus; b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronavirus that is different from said first coronavirus; c) a third region comprising a portion of a coronavirus spike protein S1 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion comprising a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronavirus that is different from said first coronavirus and said second coronavirus.

In further aspects, the present invention further provides an isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of this invention, as well as a vector comprising the isolated nucleic acid molecule. Also provided are compositions comprising the chimeric coronavirus spike proteins, isolated nucleic acid molecules and/or vectors of this invention in a pharmaceutically acceptable carrier.

In further aspects, the present invention provides a method of producing an immune response to a coronavirus in a subject, treating a coronavirus infection in a subject, preventing a disease or disorder caused by coronavirus infection in a subject and/or protecting a subject from the effects of coronavirus infection, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein, the isolated nucleic acid molecule the vector and/or the composition of this invention, or any combination thereof, thereby producing an immune response to a coronavirus in the subject, treating a coronavirus infection in the subject, preventing a disease or disorder caused by coronavirus infection in the subject and/or protecting the subject from the effects of coronavirus infection.

In further aspects, the present invention provides a method of identifying a coronavirus spike protein for administration to elicit an immune response to coronavirus in a subject infected by a coronavirus and/or a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired, comprising: a) contacting a sample obtained from a subject infected with a coronavirus with a panel of proteins comprising: 1) one or more chimeric coronavirus spike proteins from a subgroup 2c coronavirus, 2) one or more chimeric coronavirus spike proteins from a subgroup 2b coronavirus, 3) one or more spike proteins from a subgroup 2a coronavirus, 4) one or more chimeric coronavirus spike proteins from a subgroup 2d coronavirus, 5) one or more chimeric coronavirus spike proteins from a subgroup 1a coronavirus, 6) one or more chimeric coronavirus spike proteins from a subgroup 1b coronavirus, and 7) any combination of (1) through (6) above, under conditions whereby an antigen/
antibody complex can form; and b) detecting formation of an antigen/antibody complex, whereby detection of formation of the antigen/antibody complex comprising the chimeric coronavirus spike protein(s) of any of (1)-(6) identifies the presence of antibodies to a spike protein of the coronavirus that is infecting the subject of (a), thereby identifying a coronavirus spike protein for administration to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

Also provided herein is a method of identifying an antibody that neutralizes a coronavirus infecting a subject, comprising: a) isolating a coronavirus from a sample of a subject infected with a coronavirus and/or suspected of being infected with a coronavirus; b) contacting the coronavirus of (a) with a panel of antibodies comprising: 1) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2c coronavirus, 2) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2b coronavirus, 3) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2a coronavirus, 4) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2d coronavirus, 5) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1a coronavirus, 6) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1b coronavirus, and 7) any combination of (1) through (6) above, to form respective coronavirus/antibody compositions, each comprising a respective antibody of the panel; c) contacting each of the respective coronavirus/antibody compositions of (b) with cells susceptible to coronavirus infection under conditions whereby coronavirus infection can occur; and d) detecting the presence or absence of infection of the cells, whereby absence of detection of infection of the cells contacted with any of the coronavirus/antibody compositions of (b) identifies the antibody of that coronavirus/antibody composition as an antibody that neutralizes the coronavirus infecting the subject.

The foregoing and other objects and aspects of the present invention are explained in detail in the specification set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Phylogenetic tree of the coronaviruses. The chimeric spike antigen HKU3-SmxS belongs to subgroup 2b, and the antigenic components of the chimeric antigen are derived from BtCoV HKU3 S, SARS CoV S, and BtCoV 279 S, all of which are circled. The other S antigens representing other subgroups of CoVs are indicated in dashed circles as controls.

FIG. 2. Design of the chimeric spike antigen. The chimeric spike antigen HKU3-SmxS has components from HKU3 S, SARS CoV S RBD, and BtCoV 279 S. The specific amino acid residues adopted from each of the spike proteins are indicated in the figure. The S1/S2 boundary is indicated (761aa). S2/Tm domain is indicated (1194aa). The top panel represents the spike protein organization in the SARS-CoV Spike, showing the spread of the neutralizing epitope across various domains of the SARS-CoV spike protein.

FIG. 3. Cross reactivity of antisera to chimeric spike antigen, with spike proteins from different CoVs. Mouse antisera to chimeric spike antigen (HKU 3 S SmxS), SARS S, BAT 1A S, HKU2 298 S, HKU 4.2 S, and HKU94 S were analyzed for their cross reactivity with these antigens. Antibodies to chimeric spike antigen recognizes SARS S (Panel B) and vice versa (Panel A). Note that there is no cross reactivity between S proteins of other subgroups.

FIG. 4. Chimeric antigen HKU 3 S SmxS protects against lethal SARS-CoV challenge. Panel A. Percent weight loss of young Balb/c mice immunized with chimeric Antigen HKU 3 S SmxS, SARS S and HKU94 S (negative control) and challenged with lethal dose of mouse adapted SARS-CoV (MA 15 virus). Mice immunized with chimeric antigen, SARS S show no weight loss. Panel B. Lung titers on Day 2 post infection of the same groups of mice shown above. Note that there is no virus detected in groups of mice vaccinated with HKU 3 S SmxS and SARS S.

FIG. 5. Chimeric antigen HKU 3 S SmxS protects against lethal SARS-CoV heterologous challenge. Panel A. Percent weight loss of young Balb/c mice immunized with chimeric spike antigen HKU 3 S SmxS, SARS S and HKU94 S (negative control) and challenged with lethal dose of heterologous mouse adapted SARS-CoV (G103 MA virus). Mice immunized with chimeric spike antigen, SARS S show no weight loss. Panel B. Lung titers on Day 2 post infection of the same groups of mice shown above. Viral replication is reduced on D2 and no virus is detected in groups of mice vaccinated with HKU 3 S SmxS and SARS S.

FIG. 6. Schematic of the HKU2 virus with the chimeric antigen HKU 3 S SmxS. Panel A. The HKU3 virus which has the chimeric antigen HKU 3 S SmxS is shown. The open reading frames are indicated. Panel B. Growth curve of HKU3 virus with the chimeric spike antigen HKU 3 S SmxS. The HKU3 virus which has the chimeric spike antigen HKU 3 S SmxS grows similar to SARS-CoV in Vero cells.

FIG. 7. Schematic of the BAT-SRBDMav. This virus has the HKU3 backbone, with the spike protein containing a chimeric of HKU3 spike and receptor binding domain from SARS-CoV spike 210aa. This virus was created by serial passage of the parent virus in 20 week old Balb/c mice, resulting in virulent phenotype. The amino acid mutations essential for mouse adaptation are indicated and for comparison, the mouse adapted SARS-CoV is shown with the mouse adapted mutations.

FIG. 8. Chimeric spike antigen HKU 3 S ma protects against lethal challenge with BAT-SRBDMav when compared. Panels A and B. Percent weight loss of young Balb/c mice immunized with chimeric antigen HKU 3 S ma, SARS S, BtCoV 279 S, and BtCoV HKU S and challenged with lethal dose of heterologous mouse adapted BAT-SRBDMav. Mice immunized with chimeric antigen, SARS S show no weight loss, whereas there is about 3-5% weight loss with HKU3 S and BtCoV 279 S. Panel C. Lung titers on Day 2 post infection of the same groups of mice shown above. Viral replication is reduced on D2 in BtCoV 279 S and HKU3 S group, but no virus is detected in groups of mice vaccinated with HKU 3 S SmxS and SARS S.

FIG. 9. Design of the chimeric spike antigen for subgroup 2c. The chimeric spike antigen 2c has components from HKU4 2 S, MERS-CoV S RBD, and BtCoV 5.5S. The specific amino acid residues adopted from each of the spike proteins are indicated. S1/S2 boundary is indicated (730aa). S2/Tm domain is indicated (~1190aa).

FIG. 10. Characterization of VRP 3526 Platform. Panel A. VEE 3526 replicon CoV S protein expression construct. The capsid and E glycoprotein genes from Venezuelan equine encephalitis virus are replaced with the Coronavirus Spike Protein gene S. The VEE capsid and E glycoproteins are supplied in separate constructs. When cells are transfect with all three constructs, VEE replicons encoding CoV S are formed. Panel B. Titers of S protein vaccine from all three different batches determined on HKB cells by an IFA assay.
Panel C. Western blot from independent experiments showing expression of SARS-CoV S protein from VRP 3526 S and VRP 3000 S vaccines in Vero cells. Lower panel indicates actin.

FIG. 11. Young adult mice are protected from homologous (MA15) and heterologous (MA15-GD03S) SARS-CoV challenge by VRP 3526 S vaccine. Panels A & B. Percent weight loss of young adult mice immunized with indicated vaccines, and challenged with 105 pfu of rMA15 (homologous) and rMA15-GD03S (heterologous) respectively. Panels C&D. Lung titers on 2 DPI infection determined by plaque assay Vero cells from experiments in Panel A and B respectively. Error bars indicate SEM. * indicates (p<0.05 in Mann-Whitney Test).

FIG. 12. Aged mice are protected from homologous (MA15) SARS-CoV challenge by VRP 3526 S vaccine. Panel A. Percent weight loss of one year old mice immunized with S protein based vaccines from three different coats, and challenged with 105 pfu of rMA15. Panel B and C. Lung titers on 2 DPI (Panel B), and 4 DPI (Panel C) determined by plaque assay Vero cells. Error bars indicate SEM. Significance as determined by Mann-Whitney test (p<0.05, indicated by asterisk).

FIG. 13. VRP 3526 elicits high Antibody response in young and aged animals. Panels A and B. ELISA results showing IgG titers to S protein, elicited in young mice (Panel A) and aged mice (Panel B) by indicated vaccine groups. Panels C and D. Neutralization potential (to SARS-CoV) of antibodies elicited by indicated vaccine groups in young mice (Panel C), and aged mice (Panel D), as measured by PRNT30 assay. Error bars indicate SD.

FIG. 14. Design of a Chimeric Spike based CoV Vaccine. Panel A. Phylogenetic tree showing Coronavirus sequences in subgroup 2b. The circles represent three viruses from which specific regions of S proteins are combined to form the chimeric spike. Panel B. Western blots showing that serum raised to the Chimeras or SARS-CoV Urbani S recognize the Chimeric Spike due to overlapping epitopes. Panel C. Design of the Chimeric Spike antigen utilizing portions of SARS-CoV, BtCoV HKU3 and BtCoV 279 Spike. The Chimera S contains the following epitopes from N terminus: a portion of ectodomain from BtCoV HKU3; a portion of Receptor Binding Domain (RBD) from SARS-CoV; a region from S1/S2 from BtCoV HKU3; followed by a region containing S2/S1m from the BtCoV 279 Spike.

FIG. 15. Chimera S Vaccine Protects from Homologous and Heterologous SARS-CoV Challenge. Panels A & B. Percent weight loss of young adult mice immunized with S protein based or Chimera S vaccine and challenged with 105 pfu of rMA15 (homologous) and rMA15-GD03S (heterologous) respectively. Panels C & D. Lung titers on 2 DPI infection determined by plaque assay Vero cells from experiments in Panel A and B respectively. Error bars indicate SEM. * indicates (p<0.05 in Mann-Whitney Test).

FIG. 16. Generation and Mouse Adaptation of a lethal Zoonotic Challenge Virus (BtCoV HKU3) from subgroup 2b. Panel A. Schematic of chimeric HKUS3 (HKUS3-SRBD-MA) containing the Receptor binding domain (green color) from SARS-CoV S protein. The Open Reading Frames are Indicated. The asterisk indicates Y436H mutation which enhances replication in mice. HKUS3-SRBD-MA was serially passaged in 20 week old BALB/c mice (schematic below) at 2 day intervals to create a lethal challenge virus. Panel B. Mouse adaptation leads to mutations in nsP5, Spike, Membrane and ORF 7b. The mutations are indicated by lollipops, and the table shows the exact nucleotide and amino acid mutations are indicated in the table.

FIG. 17. HKU-3-SRBD-MAv causes severe respiratory disease in 20 wk old Balb/c mice culminating in lethality. Panel A. Percent weight loss of 20 wk old Balb/c mice infected with 105 pfu of HKU3-SRBD-MAv through 4 days post infection. Note that the infected mice lose 20% of their body weight 4 days post infection. Panel B. Viral titers in lungs of mice at Day 2 and 4 post infection. Panel C. Histopathology of H&E stained lung sections at day 4 P.I. showing denuded airways, perivascular cuffing and formation of hyaline membranes (black arrow), which are markers of severe lung disease.

FIG. 18. Chimera S vaccine protects mice from HKU3-SRBD-MAv Challenge. Panel A. Percent weight loss of 20 wk old Balb/C mice immunized with SARS CoV S, BtCoV HKU3, BtCoV 279S, Chimera S or mock vaccinated and challenged with 105 pfu of HKU3-SRBD-MAv. Panel B. Lung titers on 2 DPI infection determined by plaque assay Vero cells Error bars indicate SEM. * indicates (p<0.05 in Mann-Whitney Test).

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the production and development of a chimeric coronavirus spike protein which induces a neutralizing immune response to coronavirus, for use for example, in the treatment and/or prevention of a disease or disorder caused by infection by a variety of different coronavirus strains.

Thus, in one aspect, the present invention provides a chimeric coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes the receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus; b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronavirus that is different from said first coronavirus; c) a third region comprising a portion of a coronavirus spike protein 51 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion comprising a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronavirus that is different from said first coronavirus and said second coronavirus.

By “orientation from amino to carboxy terminus” it is meant that the regions of the chimeric coronavirus spike protein are present from left to right in the same orientation as the amino terminus and carboxy terminus of a protein. This term is intended to describe orientation only and does not mean that the first region as described in the chimeric coronavirus structural protein is present at the exact amino terminus in all embodiments although that could be the case in some embodiments. Similarly this term does not mean that the fourth region as described in the chimeric coronavirus structural protein is present at the exact carboxy terminus in all embodiments although that could be the case in some embodiments.

Representative nonlimiting examples of a chimeric coronavirus spike protein of this invention are shown in FIGS. 2 and 9, each of which show a schematic of a subgroup b
coronavirus spike protein and a subgroup c coronavirus spike protein, respectively with the regions described above shown in their locations in a nonchimeric (e.g., wild type) coronavirus.

The chimeric coronavirus spike protein of this invention can be produced by combining domains or portions of coronavirus spike proteins as described above from subgroup 1a coronaviruses, subgroup 1b coronaviruses, subgroup 2a coronaviruses, subgroup 2b coronaviruses, subgroup 2c coronaviruses, or subgroup 2d coronaviruses. As one nonlimiting example, the present invention provides a chimeric subgroup 2b coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising amino acids 1-325 of a spike protein of a first subgroup 2b coronavirus; b) a second region comprising amino acids 322-500 of a spike protein of a second subgroup 2b coronavirus; c) a third region comprising amino acids 488-842 of a spike protein of said first subgroup 2b coronavirus; and) a fourth region comprising amino acids 842-1241 of a spike protein of a third subgroup 2b coronavirus. The amino acid sequence of the chimeric coronavirus spike protein of this example is shown below, with these four regions identified (first and third regions from said first subgroup 2b coronavirus shown in bold; second region from said second subgroup 2b coronavirus shown with underline; and fourth region from said third subgroup 2b coronavirus shown in italics).

(SEQ ID NO: 1)

MKILIPAFLA NLAKAQBCGC I1SREPQPKM AQVDESRRGQ YNDDFIFGSD VLNLTQVFPL

FKDNPLQYYP SNAVQDSREY YFQDNPILDFQ DGVYPATEK SVNIROMTFG SSFQMTGQA

121 IVYNEQHHTII IRVCHQNLCK EPMTIVSRGT QQNHVYEQA FMCTYDDVEK SQFQLTTFPK

101 GNFELEKTY FENRDOFLSV YQTTAANLQ RGLPQFSVL KPIKLPPGI NITSYEVMV

241 MFQEQTPSNFL PSEAIYTVN LEYSTFNLRF NENQITDDAC DCSQNPLAEL KCTIKNFND

301 KQITQTSNPR VSPCTQVRFPH NTETOPCPG EVQMATEPES VYAXKKEIS NUCVDSYVS

361 NSTTRSFYFC YSVATKELG LCPSNVLYD NVKSGDFRQ JAPQOQTVIA DYNKLPDGP

421 MCDCALNMTK HRLNATIGNY TKYKLYRLH LKLFFERDIS NYPFQDSEKP CETPVALCVN

481 PLHDIQFYTT TQFGFYQVVR VVLSFELNN PATUCQPKLS TDLVKMQCVN PFGMLKQLYG

541 VITSSQQQFQ SQQQGQGQDS DPTQDVRDPQ TEAIQLIDITP SQGQDSVITP ONASSESEAV

601 LQYQQNCTDV PTAIRADQIL PANKTQCTV NQFQTQAGCL IOAEKLYNAY KCDIPIAGI

661 CAGTHTASVL RSTQCSQVTA YSMSLAENG IAAYNASHII ITNPSVISVT EYNVQYSMAK

721 AVDCYMIQGC DLSEGCNLLL QTQSFQCTOQ RALTGIAIIRQ DASNQTFYVAQ DVMQKTTFAI

781 KDQGSGFSQP ILDFEPSTEK RSPFDLELIQ KVTLADAGPM KYQCDLIGTV SARDIAQK

841 FNGTTLVPL LTDGNAAT AALAGGOTATA QTHINGAYSL QIFFAMQMAK RPKIQGTQTN

901 VLYNQKQIA QNPRAIQQSI QELITTISTA LOKLOIQVND NAQALITYL QNLSNFGAIS

961 SVIDLHSLK DKVEWVQGSL RITQTRQLSI QTVVQTLIR AAIARESANL AATIOSBCVL

1021 QGEKQVFPCQ KTVILMSQFCQ AHPFGYVFLK YTVPSQREM FTAAPAICHE SKAYFPHRGV

1081 FSQNNQTSWI TQIQYFSPQII IJTTAETVAG NCDAGISGQ NTQODLQFPE LDSEFJKEDK

1141 YPMNPTUSV DLYDADQGINA SVUSQKEREY RISEVAKNL ELSLDDLGEL KYQYIKFKNW

1201 YWLOPIIAGL IAIVMTTILL COMTSCCSCG KGASCQCGGK KFEDQDSXPV LQVYKLIYT

The exemplary chimeric coronavirus spike protein above was produced from the following three subgroup 2b coronaviruses: Bat SARS CoV-HKU3 spike protein (GenBank® Accession No. ACJ60094.1) (first coronavirus) (SEQ ID NO:2)
SARS CoV Urbani spike protein (Accession No. AAP13441.1) (second coronavirus) (SEQ ID NO:3):

1 MFIPLLPLTL TSGDLDORCT TFDDQAFPHY TGHTSSMEGV YYPDEIFRSD TLYLQGDLPL
2 PPYSNVTQFH TINHTQPENF IFKDGQYFA ATEKSNVVRG WWQGTMNNE SQSVIINNH
3 TMVIRACNE LCLCNFPFAY SKNPYCTHT MIPNNAPCT FEYSIFAETL DVSRSKONPK
4 HLREPVPENK DGPLYLYKGY QPDPDELQP SGIVTLEQPF KPLPQNNITF FRAITAFSP
5 AQVINGTASA AYPYGILKFT TFMKYDENFG TTDADVCQ MPLAEKCSV RSEIDEQY
6 QTENFRRVPS GDORFIRFMNT MLCPFGPYN IIIFFSSYMAN AERKKISCSVA DSVLYNHTYF
7 PSTFCEVTYS ATEKNDLQCS MVYADSFVK GDYVRQIAQP QTOGIATDN KLDPDEPQCY
8 LAMRTNIDTA TTTONTYFVE RLYRHKELRP FERDDHYYPF SDPDQFTCPF ALACTWFLND
9 TGFYTTTQIG YQYFRRVVL S FELLNAPATV CGKVLSTCLI KHIQCVNNFHP GLTGQTVLTP
10 SMKQEFCQFOQ CGRDVSFEDT SVROPKSHRI LDISSPCQFOQ VSIVTQTMA SKEVAVYQD
11 VNCTDYSTAI HAAQDTPWRF IYSTQNKVLP TQAGCQGIAK MVDTSSYCDI PIGAGCASY
12 HTSLLRESTS QKSVATYNS LDGASSYIAS NTIIAIFTPF SISITTEVMP VSMARTSVDCC
13 BNNYCECCSTR CANNLQYGS FCTQALRALS GISABQSDINT RVFPAQFKGQ YKTPTLKFG
14 GNPSEQILPD PLKPERSIFL EDLPPKTVL ADAGMMPQVQ ECLGDINHARD LICAQFKPGL
15 TVLPLTDQ MIAAYTAALV SGATAGWTP GAQQALQIFP AMQMYRPING IQGTQNYLVE
16 NQQRQIANQH KAIISQIQEL TLSTTSALK QDVQNKNAQ LNLTVKLQSSL NPQAISSSLN
17 DILSDLQKVR AVQIDRSLIT CQXLQQTQV TQQLKIRAEE RASANLAALT MSECVLQKQK
18 KVDPQCGRYR LAMSPQASSP GVYPLHAVTYV PQERNPTTA PAICHEGKAY FPREGVVPFN
19 GTWQITQRN FQPSQITTTD NTFVGHCDCV VIGIINNFY DPLQDELDSF KEKEKITYKFN
20 HTSFDVQDLQ EIGINASVPN IQKEIDRLNE VAKNLNESLII DLQELGKYEQ YIKWPWYVWL
21 GQIAGLIAIV MVILLCCNT SCCSSCQGAC ECSOCRHEE DDASEVLKGV KLHYT
It is to be understood that this example is not intended to be limiting and any of these three subgroup 2b coronaviruses can be combined with any other subgroup 2b coronavirus in any combination of first coronavirus, second coronavirus and third coronavirus, provided that they are all different from one another.

Furthermore, the length in amino acid residues of the respective regions of the chimeric subgroup 2b coronavirus spike protein can vary. For example, the first region can comprise amino acid 1 through amino acid 320, amino acid 1 through amino acid 321, amino acid 1 through amino acid 322, amino acid 1 through amino acid 323, amino acid 1 through amino acid 324, amino acid 1 through amino acid 325, amino acid 1 through amino acid 326, amino acid 1 through amino acid 327, amino acid 1 through amino acid 328, amino acid 1 through amino acid 329 or amino acid 1 through amino acid 330 of a subgroup 2b coronavirus spike protein, which is a first coronavirus. Amino acid numbering is based on the numbering of amino acid residues in a subgroup 2b coronavirus spike protein, representative examples of which are provided herein.

For the second region of the chimeric subgroup 2b coronavirus spike protein of this invention, the amino end of the second region can begin at amino acid 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329 or 330 of a subgroup 2b coronavirus spike protein and be contiguous through amino acid 490, 491, 492, 493, 494, 495, 520, 521, 522, 523, 524 or 525 of a subgroup 2b coronavirus spike protein of a second coronavirus that is different from the first coronavirus.

For the third region of the chimeric subgroup 2b coronavirus spike protein of this invention, the amino end of the third region can begin at amino acid 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524 or 525 of a subgroup 2b coronavirus spike protein of a second coronavirus that is different from the first coronavirus.
As a further nonlimiting example, the present invention provides a chimeric subgroup 2c coronavirus spike protein comprising, in orientation from amino to carboxy terminus: a) a first region comprising amino acids 1-371 of a spike protein of a first subgroup 2c coronavirus; b) a second region comprising amino acids 367-588 of a spike protein of a second subgroup 2c coronavirus; c) a third region comprising amino acids 594-983 of the spike protein of said first subgroup 2c coronavirus; and d) a fourth region comprising amino acids 986-1357 of a spike protein of a third subgroup 2c coronavirus. The amino acid sequence of the chimeric coronavirus spike protein of this example is shown below, with these four regions identified (first and third regions from said first subgroup 2c coronavirus shown in bold; second region from said second subgroup 2c coronavirus shown with underline; and fourth region from said third subgroup 2c coronavirus shown in italics).

(SEQ ID NO: 5)

```
1   MTLMLCCLMS LLIPVRQDCS QFYVMSFASN TSECLESQVD AAPSFLMPW YP1DPSEKVD
61  IITPLQRTYS NITLAYTGLP PLQGDLGQGY LYSVSKAVGN DDSFPRAYIS NYYLLVNQFD
121  NPFFVRAAGA ANOTOTIVIS PSYNTEIEKA YPAPILSSL TNNAGQQPYL ANYSITIIPD
181  GCTVILHAFY CILKPRVNYR CPSGOTYVSY FIYETVHNDC QSTINRNAGL NYPFKERFDLV
241  NCTFPFSWDL TADETEKFGW ITQDTQGQVH LYSRSGQGLYQ GNMPFRFATLP YIGEKXYYTV
301  IPSRSFREKAN KREAWAFYTY VELHQLTYLL DFSVVGFIYR AIDCQHDDSL QLNCSTTSSPE
361  VHDGVGYSVSS YFAKPSGQV EQASGVECDP SPLLQPGFQ VYNFVLPVTFC NHNLITRLKL
421  SLSFNSDETC SQCPPAIAJ MCYSILLDLY PSYPLSKMD LQVSAOGYQ FQHNYQYFSFN
481  PTCGLTATPV HLKTTITDPLK EYSYNKCRNL LGLSERTKVP QLNNQHQQVP CTVSVEVSTNV
541  EDQGTVKQNL SPLEDGQMLL AGSTVAMTP QLQKMPTQTY QYQOTNSVFC PHLDAGLTL
601  ITHNLGLKQVDYL VYGTGVRG VPQMCNCTAVG KQRFVYDG DNLGVDYSEDD QNYVCRCFY
661  SVPSYVIYDQ STNHATLFPG SVCHAVVTPN MDQPSRQDG NLRBDNHPQ LTQAVCQVPG
721  LSNSNLVSDL CKLPQGQGSC AVYPPSTFHR YSAAQVQIAY LNTSPTQVTV PINSQQTFAA
781  ITPNFSPYVT QYIETQKVQ VTQGQETQVC MGTFQCEKL VVEQYQCSKII MQALQGAMLR
841  QGAESVSTLS NIKTSTQSQI YOGLMDPQDL TLQVQPIQGC RSGSYRSAQL DLDQEFFYTV
901  DPGQTVQDDCM CQOQEQGICAR DLACQTVQSG YKLLFPLYDF NNEATYSSQLL RSGIAQWT
961  AGLSPPAARF PAOQMYRENL QVGIQQQLY VEQLKQIANRF MQALGMQTG FITTTLAFNK
1021  VQDQNAVNAM ALSILASELS NTFAWASSSI SDDILADTVT EQAQIDRLI NQALTSALAF
1081  VQAQQVTERA AARSAQIAAQ KVECVEQKQ KANGCTOTI HVIPZAINAQ NQYQCCQGVGI
1141  QPQHSVATA AYGLCNDENS PKEIAPIDG YVLPQTSTQA RSGQOHVY TGSSPNEP
1201  ITPRAXKAEYV MDFQFMHLN KLPFLLSNS TOLDKQDELE EFHPHQQSDP RMPSQSKIN
1261  TTTNLINTEL MVLSVEVQQL HESYIDXEL GNYTFQQIWF NYHLOPFAIAG LVALACVF
1321  ILCCCTGCGS CLOHLCKCROC CDSEDEYEVKE KINVR

The exemplary chimeric coronavirus spike protein shown above was produced from the following three subgroup 2c coronaviruses: Bat CoV HKU4-2 spike protein (Accession No. ABN10848.1) (SEQ ID NO:6)

```

1 MTLMLCCLMS LLIPVRQDCS QFYVMSFASN TSECLESQVD AAPSFLMPW YP1DPSEKVD
61 IITPLQRTYS NITLAYTGLP PLQGDLGQGY LYSVSKAVGN DDSFPRAYIS NYYLLVNQFD
121 NPFFVRAAGA ANOTOTIVIS PSYNTEIEKA YPAPILSSL TNNAGQQPYL ANYSITIIPD
181 GCTVILHAFY CILKPRVNYR CPSGOTYVSY FIYETVHNDC QSTINRNAGL NYPFKERFDLV
241 NCTFPFSWDL TADETEKFGW ITQDTQGQVH LYSRSGQGLYQ GNMPFRFATLP YIGEKXYYTV
301 IPSRSFREKAN KREAWAFYTY VELHQLTYLL DFSVVGFIYR AIDCQHDDSL QLNCSTTSSPE
361 VHDGVGYSVSS YFAKPSGQV EQASGVECDP SPLLQPGFQ VYNFVLPVTFC NHNLITRLKL
421 SLSFNSDETC SQCPPAIAJ MCYSILLDLY PSYPLSKMD LQVSAOGYQ FQHNYQYFSFN
481 PTCGLTATPV HLKTTITDPLK EYSYNKCRNL LGLSERTKVP QLNNQHQQVP CTVSVEVSTNV
541 EDQGTVKQNL SPLEDGQMLL AGSTVAMTP QLQKMPTQTY QYQOTNSVFC PHLDAGLTL
601 ITHNLGLKQVDYL VYGTGVRG VPQMCNCTAVG KQRFVYDG DNLGVDYSEDD QNYVCRCFY
661 SVPSYVIYDQ STNHATLFPG SVCHAVVTPN MDQPSRQDG NLRBDNHPQ LTQAVCQVPG
721 LSNSNLVSDL CKLPQGQGSC AVYPPSTFHR YSAAQVQIAY LNTSPTQVTV PINSQQTFAA
781 ITPNFSPYVT QYIETQKVQ VTQGQETQVC MGTFQCEKL VVEQYQCSKII MQALQGAMLR
841 QGAESVSTLS NIKTSTQSQI YOGLMDPQDL TLQVQPIQGC RSGSYRSAQL DLDQEFFYTV
901 DPGQTVQDDCM CQOQEQGICAR DLACQTVQSG YKLLFPLYDF NNEATYSSQLL RSGIAQWT
961 AGLSPPAARF PAOQMYRENL QVGIQQQLY VEQLKQIANRF MQALGMQTG FITTTLAFNK
1021 VQDQNAVNAM ALSILASELS NTFAWASSSI SDDILADTVT EQAQIDRLI NQALTSALAF
1081 VQAQQVTERA AARSAQIAAQ KVECVEQKQ KANGCTOTI HVIPZAINAQ NQYQCCQGVGI
1141 QPQHSVATA AYGLCNDENS PKEIAPIDG YVLPQTSTQA RSGQOHVY TGSSPNEP
1201 ITPRAXKAEYV MDFQFMHLN KLPFLLSNS TOLDKQDELE EFHPHQQSDP RMPSQSKIN
1261 TTTNLINTEL MVLSVEVQQL HESYIDXEL GNYTFQQIWF NYHLOPFAIAG LVALACVF
1321 ILCCCTGCGS CLOHLCKCROC CDSEDEYEVKE KINVR
```
MSRS-CoV spike protein (GenBank Accession No. AFS88363.1) (SEQ ID NO:7)

1 MHISVFPLMW LLTPTSYVD VGDPSVKSAC IERIDIQTPF DKTNFPDPDV SAKDGIYPQ
61 GRTVNITIT YQOLPPYESD KXDIYVYSAK HATGTPQKL FYVANYSQYVQ QPAKQPFWRI
121 GAIASSTTV IISPSTSTATI RIKYPAFPGQ SSGNFPSDGK MORFPHNLW LLPQCCOTLL
181 RAYFICILEPR SGHNCAPAGS YTSFATHTHP ATDSCDHNY HRASLNSFKE YPNLHMCTPM
241 YTNITHDRI LRMGQGCPGA QCGNLPSSYS VDLYCMNMPQ PATLFPYDHY KTYSSIPHSI
301 RSHQDKWAV AQPVXYKLP LTLFLLDSPV YGIYRAIDCQ FDLSQOLMCQ YSFVDFSQGV
361 YVSFFPRAP QSGQVRQAEK VECOSPPSSLG GTFQYNTFQK RLLYPSNKNL YTLELLSPDV
421 NFQFTQIFSP AAIALSANCS LILIDEFSYL EMEDEYVESS AGQISIQMTE QSFNQYFCLK
481 LATVPETHI ITKLEDVSTY MNCSRALLDV IEYVPCQVYNA QYSECVGSV PFTVWEDDQY
541 TFEQGSPLEG GQHVLAYSGG VAMQEQOMHS QGTVYQYTD TSHYVFPELQF AEHTKIASQL
601 GRCVYQSGQ VQGRVQFPQX TCQVRCQAOR FYDVQCVNLQ YRSDGNYOC LRACSVYPVS
661 VIYDKETKTH ATLPQSVACE HISSMTQSYS RSTRSHLEE RSTQGPEPTF VCGVLGLVNS
721 SLEFVDCQCL LQCELQCALDP TSTLDREAJ ESPPMENLX SIAFPRHPRQV DLQANSTYKL
781 SIPTHSPEPV QCVTHIYQTV KTVDCDKQTV CMQFQQCRCQ LREYQQPQCSK IQMALNQANL
841 QQDSRQYVHP ASVQVQSSQP IIQPFQKVNQ LTLLEIPVIS SGNRSSAZSL EELDFP Depot
901 ADQFYQLQYD DQLOQQFSAD RDLAQQYVA QYVQFPQMDL VMEMAYTTSS LLGISIAADGN
961 TAGLOSSAFI PFAQQQFPQ GQGYTQQOQL SBBQMIKNNQ FNQALGAMQGF QFTTQNAQPP
1021 KVQADAVXNA QASQKLXSLA SNTPGAISA QIGDITQALD LEQDQAIQLD LRGRLTILNA
1081 FVAQQQVLQRE SAAWLSALAK DQXEVCSQAK SQSFCQGQO QHTVSQVVNA FGKLYVPNQW
1141 YFPSNHEVQ SAYCQDACAN PTCIAPVFQ YFQKINNTRI VDFNSYCSS FYAFPTSL
1201 NTYKVPQVQT YQNSITKNLF PQLRNSGTDQ PQDELQEFK NVGTSIHPFQ SLQINTTLL
It is to be understood that this example is not intended to be limiting and any of these three subgroup 2c coronaviruses can be combined with any other subgroup 2c coronavirus in any combination of first coronavirus, second coronavirus and third coronavirus, provided that they are all different from one another.

Furthermore, the length in amino acid residues of the respective regions of the chimeric subgroup 2c coronavirus spike protein can vary. For example, the first region can comprise amino acid 1 through amino acid 365, amino acid 1 through amino acid 366, amino acid 1 through amino acid 367, amino acid 1 through amino acid 368, amino acid 1 through amino acid 369, amino acid 1 through amino acid 370, amino acid 1 through amino acid 371, amino acid 1 through amino acid 372, amino acid 1 through amino acid 373, amino acid 1 through amino acid 374 or amino acid 1 through amino acid 375 of a subgroup 2c coronavirus spike protein, which is a first coronavirus Amino acid numbering is based on the numbering of amino acid residues in a subgroup 2c coronavirus spike protein, representative examples of which are provided herein.

For the second region of the chimeric subgroup 2c coronavirus spike protein of this invention, the amino end of the second region can begin at amino acid 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374 or 375 of a subgroup 2c coronavirus spike protein and be contiguous through amino acid 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599 or 600 of a subgroup 2c coronavirus spike protein of a second coronavirus that is different from the first coronavirus.

For the third region of the chimeric subgroup 2c coronavirus spike protein of this invention, the amino end of the third region can begin at amino acid 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599 or 600 of a subgroup 2c coronavirus spike protein and be contiguous through amino acid 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999 or 1000 of a subgroup 2c coronavirus spike protein. As noted above, the third region of the chimeric coronavirus spike protein is from the subgroup 2c coronavirus that is the first coronavirus.
For the fourth region of the chimeric subgroup 2c coronavirus spike protein of this invention, the amino acid of the fourth region can begin at amino acid 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999 or 1000 of a subgroup 2c coronavirus spike protein and be contiguous through amino acid 1345, 1346, 1347, 1348, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1370 or the final amino acid at the carboxy terminus of a subgroup 2c coronavirus spike protein. As noted above the fourth region of the chimeric coronavirus spike protein is from a third subgroup 2c coronavirus that is different from the first subgroup 2c coronavirus and the second subgroup 2c coronavirus used to produce this chimeric coronavirus spike protein.

Although the examples set forth above describe a chimeric spike protein produced from subgroup 2b coronaviruses and a chimeric spike protein produced from subgroup 2c coronaviruses, it is to be understood that a chimeric coronavirus spike protein of this invention can be made from any combination of three different coronaviruses from any subgroup, including subgroup 1a, subgroup 1b, subgroup 2a, subgroup 2d and subgroup 3 in addition to subgroup 2b and subgroup 2c. The same arrangement of the first, second, third and fourth regions as described above would be applicable to a chimeric coronavirus spike protein of any subgroup and the same variability with regard to the amino acids that define the beginning and end of each of these four regions would be applicable to a chimeric coronavirus spike protein of any subgroup.

Furthermore, the chimeric coronavirus spike proteins produced from the respective coronavirus subgroups 1a, 1b, 2a, 2b, 2c, 2d and 3 can be included in the methods and compositions of this invention in any combination and/or in any ratio relative to one another, as would be well understood to one of ordinary skill in the art.

Nonlimiting examples of subgroup 2b coronaviruses that can be used to produce the chimeric coronavirus spike protein of this invention include Bat SARS-CoV (GenBank Accession No. FJ211859), SARS-CoV (GenBank Accession No. FJ211860), BtSARS-HKU3.1 (GenBank Accession No. DQ002205), BtSARS-HKU3.2 (GenBank Accession No. DQ084199), BtSARS-HKU3.3 (GenBank Accession No. DQ084200), BtSARS-Rm1 (GenBank Accession No. DQ412043), BtCoV.279.2005 (GenBank Accession No. DQ648857), BtSARS-Rf1 (GenBank Accession No. DQ412042), BtCoV.273.2005 (GenBank Accession No. DQ648856), BtSARS-Rp3 (GenBank Accession No. DQ071615), SARS-CoV-M22 (GenBank Accession No. AY086863), SARSCoV/MU/K-W1 (GenBank Accession No. AY278554), SARSCoVGDAO1 (GenBank Accession No. AY278489), SARSCoV/HC.SZ61.03 (GenBank Accession No. AY515512), SARSCoVSZ16 (GenBank Accession No. AY384488), SARSCoV/Urban (GenBank Accession No. AY278741), SARSCoV/civet010 (GenBank Accession No. AY572035), and SARSCoV/MA15 (GenBank Accession No. DQ497008). Rs SIC014 (GenBank® Accession No. KC881005), Rs3367 (GenBank® Accession No. KC881006), WIV1S (GenBank® Accession No. KC881007) as well as any other subgroup 2b coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of subgroup 2c coronaviruses that can be used to produce the chimeric coronavirus capsid protein of this invention include: Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012 (GenBank Accession No. KF600652.1), Middle East respiratory syndrome coronavirus isolate Al-Has_18_2013 (GenBank Accession No. KF600651.1), Middle East respiratory syndrome coronavirus isolate Al-Has_17_2013 (GenBank Accession No. KF600647.1), Middle East respiratory syndrome coronavirus isolate Al-Has_15_2013 (GenBank Accession No. KF600645.1), Middle East respiratory syndrome coronavirus isolate Al-Has_16_2013 (GenBank Accession No. KF600644.1), Middle East respiratory syndrome coronavirus isolate Al-Has_21_2013 (GenBank Accession No. KF600634), Middle East respiratory syndrome coronavirus isolate Al-Has_19_2013 (GenBank Accession No. KF600632), Middle East respiratory syndrome coronavirus isolate Buraidah_1_2013 (GenBank Accession No. KF600630.1), Middle East respiratory syndrome coronavirus isolate Half-Al-Batin_1_2013 (GenBank Accession No. KF600628.1), Middle East respiratory syndrome coronavirus isolate Al-Has_12_2013 (GenBank Accession No. KF600627.1), Middle East respiratory syndrome coronavirus isolate Bisha_1_2012 (GenBank Accession No. KF600620.1), Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013 (GenBank Accession No. KF600613.1), Middle East respiratory syndrome coronavirus isolate Riyadh_1_2012 (GenBank Accession No. KF600612.1), Middle East respiratory syndrome coronavirus isolate Al-Has_3_2013 (GenBank Accession No. KF186565.1), Middle East respiratory syndrome coronavirus isolate Al-Has_1_2013 (GenBank Accession No. KF186567.1), Middle East respiratory syndrome coronavirus isolate Al-Has_2_2013 (GenBank Accession No. KF186566.1), Middle East respiratory syndrome coronavirus isolate Al-Has_4_2013 (GenBank Accession No. KF186564.1), Middle East respiratory syndrome coronavirus (GenBank Accession No. KF192507.1), Betacoronavirus Engagement I-N1 (GenBank Accession No. NC_019843), MEARS-CoV_SA-N1 (GenBank Accession No. KF667074), following isolates of Middle East Respiratory Syndrome Coronavirus (GenBank Accession No: KF600656.1, GenBank Accession No: KF600655.1, GenBank Accession No: KF600654.1, GenBank Accession No: KF600649.1, GenBank Accession No: KF600648.1, GenBank Accession No: KF600646.1, GenBank Accession No: KF600643.1, GenBank Accession No: KF600642.1, GenBank Accession No: KF600640.1, GenBank Accession No: KF600639.1, GenBank Accession No: KF600638.1, GenBank Accession No: KF600637.1, GenBank Accession No: KF600636.1, GenBank Accession No: KF600635.1, GenBank Accession No: KF600631.1, GenBank Accession No: KF600626.1, GenBank Accession No: KF600625.1, GenBank Accession No: KF600624.1, GenBank Accession No: KF600623.1, GenBank Accession No: KF600622.1, GenBank Accession No: KF600621.1, GenBank Accession No: KF600619.1, GenBank Accession No: KF600618.1, GenBank Accession No: KF600616.1, GenBank Accession No: KF600615.1, GenBank Accession No: KF600614.1, GenBank Accession No: KF600641.1, GenBank Accession No: KF600631.1, GenBank Accession No: KF600629.1, GenBank Accession No: KF600617.1), Coronavirus Neoromelia/ML-PHEI/RSA/2011 GenBank Accession: KC869678.2, Bat Coronavirus Taper/CIL_KSA_287/Bisha/Saudi Arabia/GenBank Accession: KF493885.1, Bat coronavirus Rhihar/CIL_KSA_003/Bisha/Saudi Arabia/2013 GenBank Accession: KF493881.1, bat coronavirus Pikuah/CIL_KSA_001/Riyadh/Saudi Arabia/2013 GenBank Accession: KF493887.1, bat coronavirus Rhihar/CIL_KSA_002/Bisha/saudi Arabia/2013 GenBank Accession: KF493886.1, Bat Coronavirus Rhihar/
In addition, the present invention provides a virus like particle (VLP) comprising the chimeric coronavirus spike protein of any of this invention and a matrix protein of any virus that can form a VLP.

The present invention also provides a coronavirus particle comprising the chimeric coronavirus spike protein of this invention.

Also provided are cells (e.g., isolated cells) comprising the vectors, nucleic acid molecules, VLPs, VRPs, and/or coronavirus particles of the invention.

Additionally provided herein is a population of any of the VLPs, VRPs and for coronavirus particles of this invention, as well as a population of virus particles that are used as viral vectors encoding the chimeric coronavirus spike protein of this invention.

The chimeric coronavirus spike proteins of this invention can be produced as recombinant proteins, e.g., in a eukaryotic cell system for recombinant protein production.

The invention also provides immunogenic compositions comprising the cells, vectors, nucleic acid molecules, VLPs, VRPs, coronavirus particles and/or populations of the invention. The composition can further comprise a pharmaceutically acceptable carrier.

The present invention further provides a method of producing an immune response to a coronavirus in a subject, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby producing an immune response to a coronavirus in the subject.

In further embodiments, the present invention provides a method of treating a coronavirus infection in a subject in need thereof, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby treating a coronavirus infection in the subject.

Additionally provided herein is a method of preventing a disease or disorder caused by a coronavirus infection in a subject, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby preventing a disease or disorder caused by a coronavirus infection in the subject.

Furthermore the present invention provides a method of protecting a subject from the effects of coronavirus infection, comprising administering to the subject an effective amount of a chimeric coronavirus spike protein, a nucleic acid molecule, a vector, a VRP, a VLP, a coronavirus particle, population and/or a composition of this invention, including any combination thereof, thereby protecting the subject from the effects of coronavirus infection.

The chimeric coronavirus spike proteins of this invention can be used to immunize a subject against infection by a newly emerging coronavirus, as well as treat a subject infected with a newly emerging coronavirus. For example, the chimeric subgroup 2b coronavirus spike proteins of this invention can be used to immunize against and/or treat infection by bat SARS CoV like virus strains such as RsSHC014 (GenBank® Accession No. KC881005), Rs3367 (GenBank® Accession No. KC881006) andFor WIV1 S (GenBank® Accession No. KC881007).

9,884,895 B2

23 FJ687457.1, GenBank Accession No. FJ687456.1, GenBank Accession No. FJ687455.1, GenBank Accession No. FJ687454.1, GenBank Accession No. FJ687453.1, GenBank Accession No. FJ687452.1, GenBank Accession No. FJ687451.1, GenBank Accession No. FJ687450.1, GenBank Accession No. FJ687449.1, GenBank Accession No. AF500215.1, GenBank Accession No. KF476061.1, GenBank Accession No. KF476060.1, GenBank Accession No. KF476059.1, GenBank Accession No. KF476058.1, GenBank Accession No. KF476057.1, GenBank Accession No. KF476056.1, GenBank Accession No. KF476055.1, GenBank Accession No. KF476054.1, GenBank Accession No. KF476053.1, GenBank Accession No. KF476052.1, GenBank Accession No. KF476051.1, GenBank Accession No. KF476050.1, GenBank Accession No. KF476049.1, GenBank Accession No. KF476048.1, GenBank Accession No. KF177258.1, GenBank Accession No. KF177257.1, GenBank Accession No. KF177256.1, GenBank Accession No. KF177255.1, HCov.V229E (GenBank Accession No. NC_002645), HCov.VNI.63.Amsterdam.1 (GenBank Accession No. NC_005831), BtCoV.HKU2.HK.298.2006 (GenBank Accession No. EF203066), BtCoV.HKU2.HK.33.2006 (GenBank Accession No. EF203067), BtCoV.HKU2.HK.46.2006 (GenBank Accession No. EF203065), BtCoV.HKU2.GD.430.2006 (GenBank Accession No. EF203064), as well as any other subgroup 1b coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 2a coronavirus of this invention include HCov.VHKU1.C.N5 (GenBank Accession No. DQ339101), MHVA59 (GenBank Accession No. NC_001846), PHEV.VW572 (GenBank Accession No. NC_007732), HCov.VOC43.ATCC.VR.759 (GenBank Accession No. NC_005147), bovine enteric coronavirus (BCoV.VENT) (GenBank Accession No. NC_003045), as well as any other subgroup 2a coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 2d coronavirus of this invention include BtCoV.HKU9.2 (GenBank Accession No. EF065514), BtCoV.HKU9.1 (GenBank Accession No. NC_009021), BtCoV.HKU9.3 (GenBank Accession No. EF065515), BtCoV.HKU9.4 (GenBank Accession No. EF065516), as well as any other subgroup 2d coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

Nonlimiting examples of a subgroup 3 coronavirus of this invention include IBV.Beaudette.JBV.p65 (GenBank Accession No. DQ001339), as well as any other subgroup 3 coronavirus now known (e.g., as can be found in the GenBank® Database) or later identified, and any combination thereof.

The present invention further provides an isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of this invention. In some embodiments, a nucleic acid molecule of this invention can be a cDNA. Also provided is a vector (e.g., a viral or bacterial vector), plasmid or other nucleic acid construct comprising the isolated nucleic acid molecule of this invention.

Further provided herein is a Venezuelan equine encephalitis replicon particle (VRP) comprising the isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of this invention.
In further embodiments, the present invention provides a method of identifying a coronavirus spike protein for administration to elicit an immune response to coronavirus in a subject infected by a coronavirus and/or a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired, comprising: a) contacting a sample obtained from a subject infected with a coronavirus with a panel of proteins comprising: 1) one or more chimeric coronavirus spike proteins from a subgroup 2c coronavirus, 2) one or more chimeric coronavirus spike proteins from a subgroup 2b coronavirus, 3) one or more spike proteins from a subgroup 2a coronavirus, 4) one or more chimeric coronavirus spike proteins from a subgroup 2d coronavirus, 5) one or more chimeric coronavirus spike proteins from a subgroup 1a coronavirus, 6) one or more chimeric coronavirus spike proteins from a subgroup 1b coronavirus, 7) one or more chimeric coronavirus spike proteins from a subgroup 3 coronavirus and 8) any combination of (1) through (7) above, under conditions whereby an antigen/antibody complex can form; and b) detecting formation of an antigen/antibody complex, whereby detection of formation of the antigen/antibody complex comprising the chimeric coronavirus spike protein(s) of any of (1)-(6) identifies the presence of antibodies to a spike protein of the coronavirus that is infecting the subject of (a), thereby identifying a coronavirus spike protein for administration to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

In some embodiments, the method set forth above can further comprise the step of administering the coronavirus spike protein identified according to the method to the subject of (a) and/or to a subject at risk of coronavirus infection and/or to a subject infected with a coronavirus and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

A method is also provided herein of identifying an antibody that neutralizes a coronavirus infecting a subject, comprising: a) isolating a coronavirus from a sample of a subject infected with a coronavirus and/or suspected of being infected with a coronavirus; b) contacting the coronavirus of (a) with a panel of antibodies comprising: 1) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2c coronavirus, 2) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2b coronavirus, 3) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2a coronavirus, 4) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 2d coronavirus, 5) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1a coronavirus, 6) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 1b coronavirus, 7) an antibody reactive with a chimeric coronavirus spike protein from a subgroup 3 coronavirus and 8) any combination of (1) through (7) above, to form respective coronavirus/antibody compositions, each comprising a respective antibody of the panel; c) contacting each of the respective coronavirus/antibody compositions of (b) with cells susceptible to coronavirus infection under conditions whereby coronavirus infection can occur; and d) detecting the presence or absence of infection of the cells, whereby absence of detection of infection of the cells contacted with any of the coronavirus/antibody compositions of (b) identifies the antibody of that coronavirus/antibody composition as an antibody that neutralizes the coronavirus infecting the subject.

In some embodiments, the method set forth above can further comprise the step of administering the antibody identified according to the method to the subject of (a) and/or to a subject infected with a coronavirus and/or to a subject at risk of coronavirus infection and/or to a subject for whom eliciting an immune response to a coronavirus is needed or desired.

As used herein, “a” or “an” or “the” can mean one or more than one. For example, “a” cell can mean one cell or a plurality of cells.

As used herein, and/or refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative (“or”).

Furthermore, the term “about,” as used herein when referring to a measurable value such as an amount of a compound or agent of this invention, dose, time, temperature, and the like, is meant to encompass variations of ±20%, ±10%, ±5%, ±1%, ±0.5%, or even ±0.1% of the specified amount.

As used herein, the transitional phrase “consisting essentially of” means that the scope of a claim is to be interpreted to encompass the specified materials or steps recited in the claim, “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention. See, In re Herz, 537 F.2d 549, 551-52, 190 USPQ 461, 463 (CCPA 1976) (emphasis in the original); see also MPEP §2111.03.

A “sample” or “biological sample” of this invention can be any biological material, such as a biological fluid, an extract from a cell, an extracellular matrix isolated from a cell, a cell (in solution or bound to a solid support), a tissue, a tissue homogenate, and the like as are well known in the art.

In the methods of this invention in which formation of an antigen/antibody complex is detected, a variety of assays can be employed for such detection. For example, various immunoassays can be used to detect antibodies or proteins (antigens) of this invention. Such immunoassays typically involve the measurement of antigen/antibody complex formation between a protein or peptide (i.e., an antigen) and its specific antibody.

The immunoassays of the invention can be either competitive or noncompetitive and both types of assays are well-known and well-developed in the art. In competitive binding assays, antigen or antibody competes with a detectably labeled antigen or antibody for specific binding to a capture site bound to a solid surface. The concentration of labeled antigen or antibody bound to the capture agent is inversely proportional to the amount of free antigen or antibody present in the sample.

Noncompetitive assays of this invention can be, for example, sandwich assays, in which, for example, the antigen is bound between two antibodies. One of the antibodies is used as a capture agent and is bound to a solid surface. The other antibody is labeled and is used to measure or detect the resultant antigen/antibody complex by e.g., visual or instrument means. A number of combinations of antibody and labeled antibody can be used, as are well known in the art.

In some embodiments, the antigen/antibody complex can be detected by other proteins capable of specifically binding human immunoglobulin constant regions, such as protein A, protein L or protein G. These proteins are normal constituents of the cell walls of streptococcal bacteria. They exhibit a strong nonimmunogenic reactivity with immunoglobulin
constant regions from a variety of species. (See, e.g., Kro


In some embodiments, the non-competitive assays need not be sandwich assays. For instance, the antibodies or antigens in the sample can be bound directly to the solid surface. The presence of antibodies or antigens in the sample can then be detected using labeled antigen or antibody, respectively.

In some embodiments, antibodies and/or proteins can be conjugated or otherwise linked or connected (e.g., covalently or noncovalently) to a solid support (e.g., bead, plate, slide, dish, membrane or well) in accordance with known techniques. Antibodies can also be conjugated or otherwise linked or connected to detectable groups such as radiolabels (e.g., 35S, 125I, 3H, 14C, 151I), enzyme labels (e.g., horseradish peroxidase, alkaline phosphatase), gold beads, chemiluminescence labels, ligands (e.g., biotin) and/or fluorescence labels (e.g., fluorescein) in accordance with known techniques.

A variety of organic and inorganic polymers, both natural and synthetic can be used for the material for the solid surface. Nonlimiting examples of polymers include polyethylene, polypropylene, poly(4-methylbutene), polysulfone, polyethylene terephthalate), nylon, poly(vinyl butyrate), polyvinylidene difluoride (PVDF), silicones, polyformaldehyde, cellulose, cellulose acetate, nitrocellulose, and the like. Other materials that can be used include, but are not limited to, paper, glass, ceramic, metal, metalloids, semiconducting materials, and glass. In addition, substances that form gels, such as proteins (e.g., gelatins), lipopolysaccharides, silicates, agarose and polycrylamides can be used. Polymers that form several aseptic phases, such as dextran, polyalkylene glycols or surfactants, such as phospholipids, long chain (12-24 carbon atoms) alkyl ammonium salts and the like are also suitable. Where the solid surface is porous, various pore sizes can be employed depending upon the nature of the system.

A variety of immunoassay systems can be used, including but not limited to, radio-immunoassays (RIA), enzyme-linked immunosorbent assays (ELISA) assays, enzyme immunoassays (EIA), “sandwich” assays, gel diffusion precipitation reactions, immunodiffusion assays, agglutination assays, immunofluorescence assays, immunofluorescence activated cell sorting (FACS) assays, immunohistochemical assays, protein A immunoassays, protein G immunoassays, protein L immunoassays, biotin/avidin assays, biotin/streptavidin assays, immunoelectrophoresis assays, precipitation/flocculation reactions, immunobLOTS (Western blot; dot/slot blot); immunodiffusion assays; liposome immunoassays; chemiluminescence assays, library screens, expression arrays, immunoprecipitation, competitive binding assays and immunohistochemical staining. These and other assays are described, among other places, in Hampton et al. (Serological Methods, a Laboratory Manual, APS Press, St Paul, Minn. (1999)) and Maddox et al. (J. Exp. Med. 158:1211-1216 (1993)); the entire contents of which are incorporated herein by reference for teachings directed to immunoassays.

The methods of this invention can also be carried out using a variety of solid phase systems, such as described in U.S. Pat. No. 5,879,881, as well as in a dry strip lateral flow system (e.g., a “dipstick” system), such as described, for example, in U.S. Patent Publication No. 20030073147, the entire contents of which are incorporated by reference herein.

Embodiments of the present invention include monoclonal antibodies produced from B cells isolated from a subject of this invention that has produced an immune response against the chimeric coronavirus spike protein of this invention, wherein said monoclonal antibodies are specific to epitopes present on the chimeric coronavirus spike protein. Such monoclonal antibodies can be specific for an epitope in any of the first, second, third or fourth regions of the chimeric coronavirus spike protein of this invention as described herein.

The term “antibody” or “antibodies” as used herein refers to all types of immunoglobulins, including IgG, IgM, IgA, IgD, and IgE. The antibody can be mononclonal or polyclonal and can be of any species of origin, including, for example, mouse, rat, rabbit, horse, goat, sheep or human, or can be a chimeric or humanized antibody. See, e.g., Walker et al., Molec. Immunol. 26:403-11 (1989). The antibodies can be recombinant monoclonal antibodies produced according to the methods disclosed in U.S. Pat. No. 4,474,893 or U.S. Pat. No. 4,816,567. The antibodies can also be chemically constructed according to the method disclosed in U.S. Pat. No. 4,676,980. The antibody can further be a single chain antibody or bispecific antibody. The antibody can also be humanized for administration to a human subject.

Antibody fragments included within the scope of the present invention include, for example, Fab, F(ab')2, and Fc fragments, and the corresponding fragments obtained from antibodies other than IgG. Such fragments can be produced by known techniques. For example, F(ab')2 fragments can be produced by pepsin digestion of the antibody molecule, and Fab fragments can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries can be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse et al., (1989) Science 254:1275-1281).

Monoclonal antibodies can be produced in a hybridoma cell line according to the technique of Kohler and Milstein, (1975) Nature 265:495-97. For example, a solution containing the appropriate antigen can be injected into a mouse and, after a sufficient time, the mouse sacrificed and spleen cells obtained. The spleen cells are then immortalized by fusing them with myeloma cells or with lymphoma cells, typically in the presence of polyethylene glycol, to produce hybridoma cells. The hybridoma cells are then grown in a suitable medium and the supernant screened for monoclonal antibodies having the desired specificity. Monoclonal Fab fragments can be produced in bacterial cell such as E. coli by recombinant techniques known to those skilled in the art. See, e.g., W. Huse, (1980) Science 246:1275-81.

Antibodies can also be obtained by phage display techniques known in the art or by immunizing a heterologous host with a cell containing an epitope of interest.

“Nidoviruses” as used herein refers to viruses within the order Nidovirales, including the families Coronaviridae and Arteriviridae. All viruses within the order Nidovirales share the unique feature of synthesizing a nested set of multiple subgenomic mRNAs. See M. Lai and K. Holmes, Coronaviridae: The Viruses and Their Replication, in Fields Virology, pg 1163, (4th Ed. 2001). Particular examples of Coronaviridae include, but are not limited to, toroviruses and coronaviruses.

“Coronavirus” as used herein refers to a genus in the family Coronaviridae, which family is in turn classified within the order Nidovirales. The coronaviruses are large, enveloped, positive-stranded RNA viruses. They have the largest genomes of all RNA viruses and replicate by a unique

A “nidovirus permissive cell” or “coronavirus permissive cell” as used herein can be any cell in which a coronavirus can at least replicate, including both naturally occurring and recombinant cells. In some embodiments the permissive cell is also one that the nidovirus or coronavirus can infect. The permissive cell can be one that has been modified by recombinant means to produce a cell surface receptor for the nidovirus or coronavirus.

An “isolated” nucleic acid molecule is one that is chemically synthesized (e.g., derived from reverse transcription) or is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid molecule. Preferably, an “isolated” nucleic acid molecule is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized (e.g., as described in Sambrook et al., eds., “Molecular Cloning: A Laboratory Manual,” 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

In particular embodiments, a nucleic acid of this invention has at least about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more nucleic acid sequence homology with the sequences specifically disclosed herein. The term “homology” as used herein refers to a degree of similarity between two or more sequences. There can be partial homology or complete homology (i.e., identity). A partially homologous sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to using the functional term “substantially homologous.” The inhibition of hybridization to the target sequence can be examined using a hybridization assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding can be tested by the use of a second target sequence, which lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence.

Alternatively, stated, in particular embodiments, nucleic acids encoding a cDNA of a coronavirus that hybridize under the conditions described herein to the complement of the sequences specifically disclosed herein can also be used according to the present invention. The term “hybridization” as used herein refers to any process by which a first strand of nucleic acid binds with a second strand of nucleic acid through base pairing.

The term “stringent” as used here refers to hybridization conditions that are commonly understood in the art to define the commodities of the hybridization procedure. High stringency hybridization conditions that will permit homologous nucleotide sequences to hybridize to a nucleotide sequence as given herein are well known in the art. As one example, hybridization of such sequences to the nucleic acid molecules disclosed herein can be carried out in 25% formamide, 5xSSC, 5xDenhardt’s solution and 5% dextran sulfate at 42° C., with wash conditions of 25% formamide, 5xSSC and 0.1% SDS at 42° C., to allow hybridization of sequences of about 60% homology. Another example includes hybridization conditions of 6xSSC, 0.1% SDS at about 45° C., followed by wash conditions of 0.2xSSC, 0.1% SDS at 50-65° C. Another example of stringent conditions is represented by a wash stringency of 0.5 M NaCl, 0.03M sodium citrate, 0.1% SDS at 60-70° C. using a standard hybridization assay (see Sambrook et al., EDS., MOLECULAR CLONING: A LABORATORY MANUAL 2d ed. (Cold Spring Harbor, N.Y. 1989, the entire contents of which are incorporated by reference herein).

The nucleic acids, proteins, peptides, viruses, vectors, particles, antibodies and populations of this invention are intended for use as therapeutic agents and immunological reagents, for example, as antigens, immunogens, vaccines, and/or nucleic acid delivery vehicles. Thus, in various embodiments, the present invention provides a composition comprising the nucleic acid, virus, vector, particle, antibody and/or population of this invention in a pharmaceutically acceptable carrier. The compositions described herein can be formulated for use as reagents (e.g., to produce antibodies) and/or for administration in a pharmaceutical carrier in accordance with known techniques. See, e.g., Remington, The Science And Practice of Pharmacy (latest edition).

In embodiments of this invention wherein a chimeric coronavirus spike protein is being administered, delivered and/or introduced into a subject, e.g., to elicit an immune response, the protein can be administered, delivered and/or introduced into the subject as a protein present in an inactivated (e.g., inactivated through UV irradiation or formalin treatment) coronavirus. The protein or active fragment thereof of this invention can be administered, delivered and/or introduced into the subject according to any method now known or later identified for administration, introduction and/or delivery of protein or active fragment thereof, as would be well known to one of ordinary skill in the art. Nonlimiting examples include administration of the protein or fragment with a protease inhibitor or other agent to protect it from degradation and/or with a polyanhydride glycol moiety (e.g., polyethylene glycol).

In some embodiments, the coronavirus protein or active fragment thereof can be administered to a subject as a nucleic acid molecule, which can be a naked nucleic acid molecule or a nucleic acid molecule present in a vector (e.g., a delivery vector, which in some embodiments can be a VRP). The nucleic acids and vectors of this invention can be
administered orally, intranasally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, transdermally, extracorporeally, topically or the like. In the methods described herein which include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection), the nucleic acids of the present invention can be in the form of naked DNA or the nucleic acids can be in a vector for delivering the nucleic acids to the cells for expression of the polypeptides and/or fragments of this invention. The vector can be commercially available preparation or can be constructed in the laboratory according to methods well known in the art. Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms, including but not limited to recombinant vectors including bacterial, viral and fungal vectors, liposomal delivery agents, nanoparticles, and gene gun related-mechanisms.

As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, Md.), SUPERFECT (QIAGEN, Inc., Hilden, Germany), and TRANSFECTAM (Promega Biotech, Inc., Madison, Wis.), as well as other liposomes developed according to procedures standard in the art. In addition, the nucleic acid or vector of this invention can be delivered in vivo by electroporation, the technology for which is available from Genetronics, Inc. (San Diego, Calif.) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, Ariz.).

As one example, vector delivery can be via a viral system, such as a retroviral vector system, which can package a recombinant retroviral genome. The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells nucleic acid encoding the polypeptide and/or fragment of this invention. The exact method of introducing the exogenous nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors, alphaviral vectors (e.g., VRPs), adeno-associated viral (AAV) vectors, lentiviral vectors, pseudotyped retroviral vectors and vaccinia viral vectors, as well as any other viral vectors now known or developed in the future. Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms. This invention can be used in conjunction with any of these or other commonly used gene transfer methods.

If ex vivo methods are employed, cells or tissues can be removed and maintained outside the body according to standard protocols well known in the art. The nucleic acids and vectors of this invention can be introduced into the cells via any gene transfer mechanism, such as, for example, virus-mediated gene delivery, calcium phosphate mediated gene delivery, electroporation, microinjection or protoliposomes. The transduced cells can then be infused (e.g., in a pharmaceutically acceptable carrier) or transplanted back into the subject per standard methods for the cell or tissue type. Standard methods are known for transplantation or infusion of various cells into a subject.

Parenteral administration of the peptides, polypeptides, nucleic acids and/or vectors of the present invention, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. As used herein, "parenteral administration" includes intradermal, intramuscular, subcutaneous, intramuscular, intraperitoneal, intravenous and intratracheal routes, as well as a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Pat. No. 3,610,795, which is incorporated by reference herein in its entirety.

In the manufacture of a pharmaceutical composition according to embodiments of the present invention, the composition of this invention is typically mixed with, inter alia, a pharmaceutically acceptable carrier. By "pharmaceutically acceptable carrier" is meant a carrier that is compatible with other ingredients in the pharmaceutical composition and that is not harmful or deleterious to the subject. A "pharmaceutically acceptable" component such as a salt, carrier, excipient or diluent of a composition according to the present invention is a component that (i) is compatible with the other ingredients of the composition in that it can be combined with the compositions of the present invention without rendering the composition unsuitable for its intended purpose, and (ii) is suitable for use with subjects as provided herein without undue adverse side effects (such as toxicity, irritation, and allergic response). Side effects are "undue" when their risk outweighs the benefit provided by the composition. Non-limiting examples of pharmaceutically acceptable components include, without limitation, any of the standard pharmaceutical carriers such as phosphate buffered saline solutions, water, emulsions such as oil/water emulsion, microemulsions and various types of wetting agents. A pharmaceutically acceptable carrier can comprise, consist essentially of or consist of one or more synthetic components (e.g., components that do not naturally occur in nature), as are known in the art.

The carrier may be a solid or a liquid, or both, and is preferably formulated with the composition of this invention as a unit-dose formulation. The pharmaceutical compositions are prepared by any of the well-known techniques of pharmacy including, but not limited to, admixing the components, optionally including one or more accessory ingredients. Exemplary pharmaceutically acceptable carriers include, but are not limited to, sterile pyrogen-free water and sterile pyrogen-free physiological saline solution. Such carriers can further include protein (e.g., serum albumin) and sugar (sucrose, sorbitol, glucose, etc.).

The pharmaceutical compositions of this invention include those suitable for oral, rectal, topical, inhalation (e.g., via an aerosol) buccal (e.g., sub-lingual), vaginal, parenteral (e.g., subcutaneous, intramuscular, intradermal, intraarticular, intrapleural, intraperitoneal, intracerebral, intraarticular, or intravenous), topical (i.e., both skin and mucosal surfaces, including airway surfaces) and transdermal administration. The compositions herein may also be administered via a skin scarification method, or transdermally via a patch or liquid. The compositions may be delivered subdermally in the form of a biodegradable material that releases the compositions over a period of time. The most suitable route in any given case will depend, as is well known in the art, on such factors as the species, age, gender and overall condition of the subject, the nature and severity of the condition being treated and/or on the nature of the particular composition (i.e., dosage, formulation) that is being administered.

A subject of this invention is any animal that is capable of producing an immune response against a coronavirus. A subject of this invention can also be any animal that is susceptible to infection by coronavirus and/or susceptible to diseases or disorders caused by coronavirus infection. A subject of this invention can be a mammal and in particular embodiments is a human, which can be an infant, a child, an adult or an elderly adult. A "subject at risk of infection by a
coronavirus” or a “subject at risk of coronavirus infection” is any subject who may be or has been exposed to a coronavirus.

As used herein, an “effective amount” refers to an amount of a compound or composition that is sufficient to produce a desired effect, which can be a therapeutic, prophylactic and/or beneficial effect.

Thus, the present invention provides a method of inducing or eliciting an immune response in a subject, comprising administering to the subject an effective amount of a virus, vector, particle, population and/or composition of this invention.

The present invention also provides a method of treating and/or preventing a coronavirus infection in a subject, comprising administering to the subject an effective amount of a virus, vector, particle, population and/or composition of this invention.

Also as used herein, the terms “treat,” “treating” and “treatment” include any type of mechanism, action or activity that results in a change in the medical status of a subject, including an improvement in the condition of the subject (e.g., change or improvement in one or more symptoms and/or clinical parameters), delay in the progression of the condition, delay of the onset of a disease or illness, etc.

One nonlimiting example of an effective amount of a virus or virus particle (e.g., VRP) of this invention is from about $10^6$ to about $10^{10}$, preferably from about $10^2$ to about $10^6$, and in particular from about $10^2$ to about $10^6$ infectious units (IU, as measured by indirect immunofluorescence assay), or virus particles, per dose, which can be administered to a subject, depending upon the age, species and/or condition of the subject being treated. For subunit vaccines (e.g., purified antigens) a dose range of from about 1 to about 100 micrograms can be used. As would be well known to one of ordinary skill in the art, the optimal dosage would need to be determined for any given antigen or vaccine, e.g., according to the method of production and resulting immune response.

As one example, if the nucleic acid of this invention is delivered to the cells of a subject in an adenovirus vector, the dosage for administration of adenovirus to humans can range from about $10^2$ to $10^6$ plaque forming units (pfu) per injection, but can be as high as $10^5$, $10^7$ and/or $10^{10}$ pfu per injection. Ideally, a subject will receive a single injection. If additional injections are necessary, they can be repeated at daily/weekly/monthly intervals for an indefinite period and/or until the efficacy of the treatment has been established. As set forth herein, the efficacy of treatment can be determined by evaluating the symptoms and clinical parameters described herein and/or by detecting a desired immunological response.

The exact amount of the nucleic acid or vector required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every nucleic acid or vector. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein.

For administration of serum or antibodies, as one nonlimiting example, a dosage range of from about 20 to about 40 International Units/Kilogram can be used, although it would be well understood that optimal dosage for administration to a subject of this invention needs to be determined, e.g., according to the method of production and resulting immune response.

In some embodiments of the present invention, the composition can be administered with an adjuvant. As used herein, “adjuvant” describes a substance, which can be any immunomodulating substance capable of being combined with the polypeptide or nucleic acid vaccine to enhance, improve or otherwise modulate an immune response in a subject without deleterious effect on the subject.

Non-limiting examples of adjuvants that can be used in the vaccine of the present invention include the RIBI adjuvant system (Ribi Inc., Hamilton, Mont.), alun, mineral gels such as aluminum hydroxide gel, oil-in-water emulsions, water-in-oil emulsions such as, e.g., Freund’s complete and incomplete adjuvants, Block copolymer (CyriRx, Atlanta Ga.), QS-21 (Cambridge Biotech Inc., Cambridge Mass.), SAF-M (Chiron, Emeryville Calif.), AMPHIGEN™, adjuvant, saponin, Quil A or other saponin fractions, monophosphoryl lipid A, and Avridine lipid-amine adjuvant. Non-limiting examples of oil-in-water emulsions useful in the vaccine of the invention include modified SEAM62 and SEAM 1/2 formulations. Modified SEAM62 is an oil-in-water emulsion containing 5% (v/v) squalene (Sigma), 1% (v/v) SPAN™ 85 detergent (ICI Surfactants), 0.7% (v/v) Tween™ 80 detergent (ICI Surfactants), 2.5% (v/v) ethanol, 200 µg/ml Quil A, 100 µg/ml cholesterol, and 0.5% (v/v) lecithin Modified SEAM 1/2 is an oil-in-water emulsion comprising 5% (v/v) squalene, 1% (v/v) SPAN™ 85 detergent, 0.7% (v/v) Tween 80 detergent, 2.5% (v/v) ethanol, 100 µg/ml Quil A, and 50 µg/ml cholesterol. Other immunomodulatory agents that can be included in the vaccine include, e.g., one or more interleukins, interferons, or other known cytokines.

In some embodiments, VEE replicon vectors can be used to express coronavirus structural genes in producing combination vaccines. Dendritic cells, which are professional antigen-presenting cells and potent inducers of T-cell responses to viral antigens, are preferred targets of VEE and VEE replicon particle infection, while SARS coronavirus targets the mucosal surfaces of the respiratory and gastrointestinal tract. As the VEE and coronavirus replicon RNAs synergistically interact, two-vector vaccine systems are feasible that may result in increased immunogenicity when compared with either vector alone. Combination prime-boost vaccines (e.g., DNA immunization and vaccinia virus vectors) have dramatically enhanced the immune response (notably cellular responses) against target papillomavirus and lentivirus antigens compared to single-immunization regimens (Chen et al. (2000) Vaccine 18:2015-2022; Gonzalo et al. (1999) Vaccine 17:887-892; Hanke et al. (1998) Vaccine 16:459-445; Pancharatnam et al. (2000), J. Infect. Dis. 182:18-27). Using different recombinant viral vectors (influenza and vaccinia) to prime and boost may also synergistically enhance the immune response, sometimes by an order of magnitude or more (Gonzalo, et al. (1999) Vaccine 17:887-892). Thus, the present invention also provides methods of combining different recombinant viral vectors (e.g., VEE and coronavirus) in prime boost protocols.

Examples

A Multivalent Vaccine that Elicits Broader Protection Against Emerging Human Coronaviruses

Replicon particles (VRPs) based on Venezuelan Equine Encephalitis Virus (VEEV) have been successfully used as vector platforms to deliver a variety of antigens. However, the requirement of wild type VEEV proteins for packaging restricts their production to biological safety laboratory level
3 (BSL3) containment and the risk of generation of wild-type VEEV through recombination imposes a high risk for use of these VRPs in humans. To circumvent this issue, we constructed VRPs using attenuated VEEV strain 3526, which can be packaged under biological safety laboratory level 2 (BSL2). Using Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Spike protein (S) as a model antigen, we show that the VRP 3526 vaccine platform (VRP 3526 S) is equally efficacious in antigen production, antibody induction and protecting young and aged mice from lethal SARS disease caused by homologous and heterologous strains of SARS-CoV.

SARS-CoV originated from a pool of heterologous viruses circulating in bats, confounding vaccine and therapeutic design should future outbreaks emerge. To address this issue, the VRP 3526 platform was used and a synthetically designed chimeric S protein containing different regions of S proteins from of BtCoV HKU3, SARS CoV S and BtCoV 279 S was constructed in V3526 backbone (Chimera S). Chimera S was efficiently expressed and was recognized by polyclonal serum to SARS-CoV. Chimera S was also effective in protecting mice from SARS disease induced by severe divergent strains of SARS CoV belonging to subgroup 2b. A zoonotic lethal challenge HKU3 virus from subgroup 2b (HKU3-SRBD-MAv) was then created where receptor binding domain (RBD) from HKU3 Spike was replaced by SARS-CoV RBD. Serial passage of this virus in mice resulted in severe airway disease and lethality. The Chimera S vaccine and SARS-CoV S vaccine was successful in eliciting complete protection from weight loss and viral replication caused by HKU3-SRBD-MAv, where as BtCoV 279 S and BtCoV HKU 3 S elicited partial protection.

Collectively, these studies describe the generation of a safe VRP platform that can be manufactured under BSL2 and also demonstrate a strategy for broadening vaccine efficacy for epidemic and closely related zoonotic pools which may emerge in the future.

The results as shown in FIGS. 10-18 demonstrate: 1) the generation of a VRP 3526 platform that can be prepared under BSL2; 2) that the VRP 3526 platform has efficacy in young and aged models of SARS disease; 3) the generation of a subgroup specific Chimeric S protein vaccine for coronaviruses; 4) the creation of a subgroup specific lethal zoonotic challenge virus (HKU3-SRBD-MAv) that is representative of a virus that may emerge into the human population in the future; 5) the generation of a Chimera S vaccine that is effective in protection from divergent strains of lethal SARS-CoV and HKU3-SRBD-MAv; 6) that a Chimeric Spike vaccine design can be effectively applied to coronaviruses from other subgroups; and 7) that the VRP 3526 platform and chimeric spike vaccine design can be broadly applicable to other zoonotic viruses that may emerge into humans.

All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented.

The invention is described by the following claims, with equivalents of the claims to be included therein.

---

**SEQUENCE LISTING**

<600> SEQUENCE: 1

Met Lys Ile Leu Ile Phe Ala Phe Leu Ala Asn Leu Ala Lys Ala Gin 1 5 10 15
Glu Gly Cys Gly Ile Ile Ser Arg Lys Pro Gln Pro Lys Met Ala Gin 20 25 30
Val Ser Ser Ser Arg Arg Gly Val Tyr Tyr Asn Asp Asp Ile Phe Arg 35 40
Ser Asp Val Leu His Leu Thr Gln Asp Tyr Phe Leu Pro Phe Asp Ser 50 55 60
Asn Leu Thr Gln Tyr Phe Ser Leu Asn Val Asp Ser Asp Tyr Thr 65 70 75 80
Tyr Phe Asp Asn Pro Ile Leu Asp Phe Gly Asp Gly Val Tyr Phe Ala 85 90
Ala Thr Glu Lys Ser Asn Val Ile Arg Gly Trp Ile Phe Gly Ser Ser 100 105 110
Phe Asp Asn Thr Thr Gln Ser Ala Val Ile Val Asn Asn Ser Thr His 115 120 125
Ile Ile Arg Val Cys Asn Phe Asn Leu Cys Lys Glu Pro Met Tyr 130 135 140
Thr Val Ser Arg Gly Thr Gln Gln Asn Ala Trp Val Tyr Gln Ser Ala 145 150 155 160
<table>
<thead>
<tr>
<th>Residue</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phe</td>
</tr>
<tr>
<td>2</td>
<td>Asn</td>
</tr>
<tr>
<td>3</td>
<td>Cys</td>
</tr>
<tr>
<td>4</td>
<td>Thr</td>
</tr>
<tr>
<td>5</td>
<td>Tyr</td>
</tr>
<tr>
<td>6</td>
<td>Asp</td>
</tr>
<tr>
<td>7</td>
<td>Arg</td>
</tr>
<tr>
<td>8</td>
<td>Val</td>
</tr>
<tr>
<td>9</td>
<td>Glu</td>
</tr>
<tr>
<td>10</td>
<td>Lys</td>
</tr>
<tr>
<td>11</td>
<td>Ser</td>
</tr>
<tr>
<td>12</td>
<td>Phe</td>
</tr>
<tr>
<td>13</td>
<td>Gin</td>
</tr>
<tr>
<td>14</td>
<td>Leu</td>
</tr>
<tr>
<td>15</td>
<td>Asp</td>
</tr>
<tr>
<td>16</td>
<td>Thr</td>
</tr>
<tr>
<td>17</td>
<td>Pro</td>
</tr>
<tr>
<td>18</td>
<td>Lys</td>
</tr>
<tr>
<td>19</td>
<td>Thr</td>
</tr>
<tr>
<td>20</td>
<td>Ser</td>
</tr>
<tr>
<td>21</td>
<td>Tyr</td>
</tr>
<tr>
<td>22</td>
<td>Arg</td>
</tr>
<tr>
<td>23</td>
<td>Val</td>
</tr>
<tr>
<td>24</td>
<td>Met</td>
</tr>
<tr>
<td>25</td>
<td>Ala</td>
</tr>
<tr>
<td>26</td>
<td>Tyr</td>
</tr>
<tr>
<td>27</td>
<td>Asn</td>
</tr>
<tr>
<td>28</td>
<td>Leu</td>
</tr>
<tr>
<td>29</td>
<td>Lys</td>
</tr>
<tr>
<td>30</td>
<td>Tyr</td>
</tr>
<tr>
<td>31</td>
<td>Ser</td>
</tr>
<tr>
<td>32</td>
<td>Tyr</td>
</tr>
<tr>
<td>33</td>
<td>Arg</td>
</tr>
<tr>
<td>34</td>
<td>Val</td>
</tr>
<tr>
<td>35</td>
<td>Met</td>
</tr>
<tr>
<td>36</td>
<td>Leu</td>
</tr>
<tr>
<td>37</td>
<td>Arg</td>
</tr>
<tr>
<td>38</td>
<td>Phe</td>
</tr>
<tr>
<td>39</td>
<td>Asn</td>
</tr>
<tr>
<td>40</td>
<td>Phe</td>
</tr>
<tr>
<td>41</td>
<td>Gin</td>
</tr>
<tr>
<td>42</td>
<td>Thr</td>
</tr>
<tr>
<td>43</td>
<td>Tyr</td>
</tr>
<tr>
<td>44</td>
<td>Arg</td>
</tr>
<tr>
<td>45</td>
<td>Thr</td>
</tr>
<tr>
<td>46</td>
<td>Lys</td>
</tr>
<tr>
<td>47</td>
<td>Tyr</td>
</tr>
<tr>
<td>48</td>
<td>Arg</td>
</tr>
<tr>
<td>49</td>
<td>Thr</td>
</tr>
<tr>
<td>50</td>
<td>Ser</td>
</tr>
<tr>
<td>51</td>
<td>Tyr</td>
</tr>
<tr>
<td>52</td>
<td>Val</td>
</tr>
<tr>
<td>53</td>
<td>Ala</td>
</tr>
<tr>
<td>54</td>
<td>Cys</td>
</tr>
<tr>
<td>55</td>
<td>Thr</td>
</tr>
<tr>
<td>56</td>
<td>Tyr</td>
</tr>
<tr>
<td>57</td>
<td>Val</td>
</tr>
<tr>
<td>58</td>
<td>Asn</td>
</tr>
<tr>
<td>59</td>
<td>Phe</td>
</tr>
<tr>
<td>60</td>
<td>Gin</td>
</tr>
<tr>
<td>61</td>
<td>Thr</td>
</tr>
<tr>
<td>62</td>
<td>Ser</td>
</tr>
<tr>
<td>63</td>
<td>Tyr</td>
</tr>
<tr>
<td>64</td>
<td>Arg</td>
</tr>
<tr>
<td>65</td>
<td>Val</td>
</tr>
<tr>
<td>66</td>
<td>Arg</td>
</tr>
<tr>
<td>67</td>
<td>Cys</td>
</tr>
<tr>
<td>68</td>
<td>Thr</td>
</tr>
<tr>
<td>69</td>
<td>Tyr</td>
</tr>
<tr>
<td>70</td>
<td>Val</td>
</tr>
<tr>
<td>71</td>
<td>Leu</td>
</tr>
<tr>
<td>72</td>
<td>Glu</td>
</tr>
<tr>
<td>73</td>
<td>Lys</td>
</tr>
<tr>
<td>74</td>
<td>Thr</td>
</tr>
<tr>
<td>75</td>
<td>Ser</td>
</tr>
<tr>
<td>76</td>
<td>Tyr</td>
</tr>
<tr>
<td>77</td>
<td>Arg</td>
</tr>
</tbody>
</table>

**Note:** The table above lists the amino acids and their corresponding positions in the protein sequence.
Ile Ser Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr

Asn Ala Ser Ser Glu Val Ala Val Leu Tyr Gin Asp Val Asn Cys Thr

Asp Val Pro Thr Ala Ile Arg Ala Asp Gin Leu Thr Pro Ala Trp Arg

Val Tyr Ser Thr Gly Val Asn Val Phe Gin Thr Gin Ala Gly Cys Leu

Ile Gly Ala Glu His Val Asn Ala Ser Tyr Glu Cys Asp Ile Pro Ile

Gly Ala Gly Ile Cys Ala Ser Tyr His Thr Ala Ser Val Leu Arg Ser

Thr Gly Gin Lys Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Glu

Asn Ser Ile Ala Tyr Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe

Ser Ile Ser Val Thr Glu Val Met Pro Val Ser Met Ala Lys Thr

Ala Val Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Leu Glu Cys Ser

Asn Leu Leu Leu Gin Tyr Gly Ser Phe Cys Thr Gin Leu Asn Arg Ala

Leu Thr Gly Ile Ala Ile Glu Gin Asp Lys Asn Thr Gin Glu Val Phe

Ala Gin Val Lys Gin Met Tyr Lys Thr Pro Ala Ile Lys Asp Phe Gly

Gly Phe Asn Phe Ser Gin Ile Leu Pro Asp Pro Ser Lys Pro Thr Lys

Arg Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp

Ala Gly Phe Met Lys Gin Tyr Gly Asp Cys Leu Gly Asp Val Ser Ala

Arg Asp Leu Ile Cys Ala Gin Lys Phe Asn Gin Leu Thr Val Leu Pro

Pro Leu Leu Thr Asp Gin Met Val Ala Tyr Thr Ala Ala Leu Val

Ser Gly Thr Ala Thr Ala Gly Trp Thr Phe Gly Ala Gly Ser Ala Leu

Gln Ile Pro Phe Ala Met Gin Met Ala Tyr Arg Phe Asn Gly Ile Gly

Val Thr Gin Asn Val Leu Tyr Asn Gin Lys Gin Ile Ala Asn Gin

Phe Asn Lys Ala Ile Ser Gin Ile Gin Glu Ser Leu Thr Thr Thr Ser

Thr Ala Leu Gly Lys Leu Gin Asp Val Val Asn Asp Ala Gin Ala

Leu Asn Thr Leu Val Lys Gin Leu Ser Ser Asn Phe Gly Ala Ile Ser

Ser Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu

Val Gin Ile Asp Arg Leu Ile Thr Gly Arg Leu Gin Ser Leu Gin Thr

Tyr Val Thr Gin Gin Leu Ile Arg Ala Ala Gin Ile Arg Ala Ser Ala
<table>
<thead>
<tr>
<th>995</th>
<th>1000</th>
<th>1005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gln Gln Ser</td>
<td>1010</td>
<td>1015</td>
</tr>
<tr>
<td>Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe</td>
<td>1025</td>
<td>1030</td>
</tr>
<tr>
<td>Pro Glu Ala Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr</td>
<td>1040</td>
<td>1045</td>
</tr>
<tr>
<td>Val Pro Ser Glu Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys</td>
<td>1055</td>
<td>1060</td>
</tr>
<tr>
<td>His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Ser</td>
<td>1070</td>
<td>1075</td>
</tr>
<tr>
<td>Asn Gly Thr Ser Trp Phe Ile Thr Glu Arg Asn Phe Tyr Ser Pro</td>
<td>1085</td>
<td>1090</td>
</tr>
<tr>
<td>Glu Ile Ile Thr Thr Asp Asn Thr Phe Val Ala Gly Asn Cys Asp</td>
<td>1100</td>
<td>1105</td>
</tr>
<tr>
<td>Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln</td>
<td>1115</td>
<td>1120</td>
</tr>
<tr>
<td>Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys</td>
<td>1130</td>
<td>1135</td>
</tr>
<tr>
<td>Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile</td>
<td>1145</td>
<td>1150</td>
</tr>
<tr>
<td>Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn</td>
<td>1160</td>
<td>1165</td>
</tr>
<tr>
<td>Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu</td>
<td>1175</td>
<td>1180</td>
</tr>
<tr>
<td>Leu Gly Lys Tyr Glu Glu Tyr Ile Lys Trp Pro Trp Tyr Val Trp</td>
<td>1190</td>
<td>1195</td>
</tr>
<tr>
<td>Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile</td>
<td>1205</td>
<td>1210</td>
</tr>
<tr>
<td>Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala</td>
<td>1220</td>
<td>1225</td>
</tr>
<tr>
<td>Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu</td>
<td>1235</td>
<td>1240</td>
</tr>
<tr>
<td>Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr</td>
<td>1250</td>
<td>1255</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 2
<211> LENGTH: 1242
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: SARS coronavirus
<400> SEQUENCE: 2

Met Lys Ile Leu Ile Phe Ala Phe Leu Ala Asn Leu Ala Lys Ala Gln 1 5 10 15
Glu Gly Cys Gly Ile Ile Ser Arg Lys Pro Glu Pro Lys Met Ala Gln 20 25 30
Val Ser Ser Ser Arg Gly Val Tyr Tyr Asp Asp Ile Phe Arg 35 40 45
Ser Asp Val Leu His Leu Thr Glu Tyr Phe Leu Pro Phe Asp Ser 50 55 60
Asn Leu Thr Glu Tyr Phe Ser Leu Asn Val Asp Ser Asp Arg Tyr Thr 65 70 75 80
Tyr Phe Asp Asn Pro Ile Leu Asp Phe Gly Asp Gly Val Tyr Phe Ala
Ala Thr Glu Lys Ser Asn Val Ile Arg Gly Trp Ile Phe Gly Ser Ser
105
110
Phe Asp Thr Thr Gln Ser Ala Val Ile Val Asn Ser Thr His
115
120
125
Ile Ile Arg Val Asp Tyr Asp Leu Cys Lys Glu Pro Met Tyr
130
135
140
Thr Val Ser Arg Gly Thr Gln Gln Asn Ala Trp Val Tyr Gln Ser Ala
145
150
155
160
Phe Asn Cys Thr Thr Gln Arg Val Glu Lys Ser Phe Gln Leu Asp Thr
165
170
175
Thr Pro Lys Thr Gln Asn Phe Leu Arg Glu Tyr Val Phe Lys
180
185
190
Asn Arg Asp Gly Phe Leu Ser Val Tyr Gln Thr Tyr Thr Ala Val Asn
195
200
205
Leu Pro Arg Gly Leu Pro Thr Gln Gln Ser Val Leu Lys Pro Ile Leu
210
215
220
Lys Leu Pro Phe Gly Ile Asn Ile Thr Ser Tyr Arg Val Val Met Ala
225
230
235
240
Met Phe Ser Gln Thr Thr Ser Asn Phe Leu Pro Gln Ser Ala Ala Tyr
245
250
255
260
265
270
Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala
275
280
285
Glu Leu Lys Cys Thr Ile Lys Asn Phe Val Asp Lys Gly Ile Tyr
290
295
300
305
Gln Thr Ser Asn Phe Arg Val Ser Pro Thr Gln Gln Val Ile Arg Phe
310
315
320
Pro Asn Ile Thr Asn Arg Gln Pro Phe Asp Lys Val Phe Asn Ala Thr
325
330
335
Arg Phe Pro Asn Val Tyr Ala Trp Gln Arg Thr Lys Ile Ser Asp Cys
340
345
350
Val Ala Asp Tyr Thr Val Leu Tyr Asn Ser Thr Ser Phe Ser Thr Phe
355
360
365
Lys Cys Tyr Gly Val Ser Pro Ser Lys Leu Ile Asp Leu Cys Phe Thr
370
375
380
Ser Val Tyr Ala Asp Thr Phe Leu Ile Arg Ser Glu Val Arg Gln
385
390
395
400
Val Ala Pro Gly Glu Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu
405
410
415
Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Thr Ala Lys His
420
425
430
Asp Thr Gly Asn Tyr Tyr Tyr Arg Ser His Arg Lys Thr Lys Leu Lys
435
440
445
Pro Phe Glu Arg Asp Leu Ser Ser Asp Asp Arg Gly Asn Val Tyr Thr
450
455
460
Leu Ser Thr Tyr Asp Asn Pro Val Val Ala Tyr Gln Ala
465
470
475
480
Thr Arg Val Val Val Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr
485
490
495
Val Cys Gly Pro Lys Leu Ser Thr Glu Leu Val Lys Asn Gln Cys Val
500
505
510
Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser
920 925 930 935 940
Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Gln Ala Glu Val
945 950 955 960
Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr
965 970 975
Val Thr Gln Gln Leu Ile Arg Ala Ala Gln Ile Arg Ala Ser Ala Asn
980 985 990 995
Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg
1000 1005
Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln
1010 1015 1020
Ser Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro
1025 1030 1035
Ser Gln Glu Lys Aen Phe Thr Thr Ala Pro Ala Ile Cys His Gln
1040 1045 1050
Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly
1055 1060 1065
Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Tyr Ser Pro Gln Leu
1070 1075 1080
Ile Thr Thr Asp Aen Thr Phe Val Ser Gly Asn Cys Asp Val Val
1085 1090 1095
Ile Gly Ile Ile Aen Thr Val Tyr Asp Pro Leu Gln Pro Glu
1100 1105 1110
Leu Asp Ser Phe Lys Glu Leu Asp Lys Tyr Phe Lys Asn His
1115 1120 1125
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala
1130 1135 1140
Ser Val Val Aen Ile Gln Lys Glu Ile Asp Arg Leu Aen Glu Val
1145 1150 1155
 Ala Lys Asn Leu Aen Gln Ser Leu Ile Asp Arg Leu Glu Leu Gly
1160 1165 1170
Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly
1175 1180 1185
Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu
1190 1195 1200
Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser
1205 1210 1215
Cys Gly Ser Cys Cys Lys Phe Asp Gln Asp Arg Ser Glu Pro Val
1220 1225 1230
Leu Lys Gly Val Lys Leu His Tyr Thr
1235 1240

<210> SEQ ID NO 3
<211> LENGTH: 1255
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE: 
<222> OTHER INFORMATION: SARS coronavirus
<400> SEQUENCE: 3
Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu
1 5 10 15
Asp Arg Cys Thr Thr Phe Asp Asp Val Gin Ala Pro Asn Tyr Thr Gln
His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg
Ser Asp Thr Leu Tyr Leu Thr Gln Leu Phe Leu Pro Phe Tyr Ser
Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly Asn Pro Val
Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn
Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln
Ser Val Ile Ile Ile Asn Ser Thr Asn Val Val Ile Arg Ala Cys
Asn Phe Glu Leu Cys Asp Asn Pro Phe Ala Val Ser Lys Pro Met
Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr
Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser
Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly
Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp
Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu
Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Thr Ala Phe Ser Pro
Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Tyr Phe Val Gly Tyr
Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile
Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys
Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn
Phe Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr
Asn Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser
Val Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr
Ser Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly
Val Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala
Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly
Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe
Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser
Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu
Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly
Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gly Asn
885 890 895
Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala
900 905 910
Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly
915 920 925
Lys Leu Gln Asp Val Val Asn Gln Ala Gln Ala Leu Asn Thr Leu
930 935 940
Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn
945 950 955 960
Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Gly Val Glu Ile Asp
965 970 975
Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln
980 985 990
Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala
995 1000 1005
Thr Lys Met Ser Glu Val Leu Gly Glu Ser Lys Arg Val Asp
1010 1015 1020
Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala Ala
1025 1030 1035
Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln
1040 1045 1050
Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys
1055 1060 1065
Ala Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser
1070 1075 1080
Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr
1085 1090 1095
Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gln
1100 1105 1110
Ile Ile Asn Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp
1115 1120 1125
Ser Phe Lys Glu Gln Leu Asp Lys Tyr Phe Lys Asn His Thr Ser
1130 1135 1140
Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser Val
1145 1150 1155
Val Asn Ile Glu Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1165 1170
Asn Leu Asn Glu Ser Leu Ile Asp Leu Glu Glu Leu Gly Lys Tyr
1180 1185
Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile
1190 1195 1200
Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys
1205 1210 1215
Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly
1220 1225 1230
Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys
1235 1240 1245
Gly Val Lys Leu His Tyr Thr
1250 1255

<210> SEQ ID NO 4
<211> LENGTH: 1241
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE: OTHER...

<400> SEQUENCE: 4

Met Lys Val Leu Ile Phe Ala Leu Leu Phe Ser Leu Ala Lys Ala Gln
 1  5  10  15

Glu Gly Cys Gly Ile Ile Ser Arg Lys Pro Gln Pro Lys Met Glu Lys
 20  25  30

Val Ser Ser Ser Arg Gly Val Tyr Tyr Asn Asp Asp Ile Phe Arg
 35  40  45

Ser Asp Val Leu His Leu Thr Gln Asp Tyr Phe Leu Pro Phe Asp Ser
 50  55  60

Asn Leu Thr Gln Tyr Phe Ser Leu Asn Ile Asp Ser Asn Lys Tyr Thr
 65  70  75  80

Tyr Phe Asp Asn Pro Ile Leu Asp Phe Gly Asp Gly Val Tyr Phe Ala
 85  90  95

 Ala Thr Glu Lys Ser Asn Val Ile Arg Gly Trp Ile Phe Gly Ser Ser
100 105 110

Phe Asp Asn Thr Thr Gln Ser Ala Ile Ile Val Asn Asn Ser Thr His
115 120 125

Ile Ile Ile Arg Val Cys Asn Phe Asn Leu Cys Lys Glu Pro Met Tyr
130 135 140

Thr Val Ser Lys Thr Gln Gln Ser Ser Ser Thr Val Tyr Gln Ser Ala
145 150 155 160

Phe Asn Cys Thr Tyr Ser Arg Val Glu Lys Ser Phe Gln Leu Asp Thr
165 170 175

 Ala Pro Lys Thr Gly Asn Phe Lys Arg Leu Arg Glu Tyr Val Phe Lys
180 185 190

Asn Arg Asp Gly Phe Leu Ser Val Tyr Gln Thr Tyr Thr Ala Val Asn
195 200 205

Leu Pro Arg Gly Phe Pro Ala Gly Phe Ser Leu Arg Pro Ile Leu
210 215 220

Lys Leu Pro Phe Gly Ile Asn Ile Thr Ser Tyr Arg Val Val Met Thr
225 230 235 240

Met Phe Ser Gln Phe Asn Ser Asn Phe Leu Pro Glu Ser Ala Ala Tyr
245 250 255

Tyr Val Gly Asn Leu Lys Tyr Thr Thr Phe Met Leu Ser Phe Asn Glu
260 265 270

Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala
275 280 285

Glu Leu Lys Cys Thr Ile Lys Asn Phe Asn Val Ser Lys Gly Ile Tyr
290 295 300

Gln Thr Ser Asn Phe Arg Val Thr Pro Thr Gln Glu Val Val Arg Phe
305 310 315 320

Pro Asn Ile Thr Asn Arg Cys Pro Phe Asp Lys Val Phe Asn Ala Ser
325 330 335

Arg Phe Pro Asn Val Tyr Ala Trp Glu Arg Thr Lys Ile Ser Asp Cys
340 345 350

Val Ala Asp Tyr Thr Val Leu Tyr Asn Ser Thr Ser Phe Ser Thr Phe
355 360 365

Lys Cys Tyr Gly Val Ser Pro Ser Lys Leu Ile Asp Leu Cys Phe Thr
370 375 380
<table>
<thead>
<tr>
<th>Amino Acid Sequence</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>385</td>
</tr>
<tr>
<td>Val Tyr Ala Asp Thr Phe Leu Ile Arg Ser Ser Glu Val Arg Gln</td>
<td>390</td>
</tr>
<tr>
<td>Val Ala Pro Gly Glu Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu</td>
<td>405</td>
</tr>
<tr>
<td>Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Thr Ala Gln Gln</td>
<td>420</td>
</tr>
<tr>
<td>Asp Gln Gly Gln Tyr Tyr Tyr Arg Ser Tyr Arg Lys Glu Lys Leu Lye</td>
<td>435</td>
</tr>
<tr>
<td>Pro Phe Glu Arg Asp Leu Ser Ser Asp Glu Asn Gly Val Tyr Thr Leu</td>
<td>450</td>
</tr>
<tr>
<td>Ser Thr Tyr Asp Phe Tyr Pro Ser Ile Pro Val Glu Tyr Glu Ala Thr</td>
<td>465</td>
</tr>
<tr>
<td>Arg Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val</td>
<td>485</td>
</tr>
<tr>
<td>Cys Gly Pro Lys Leu Ser Thr Glu Val Leu Val Lys Asn Gln Cys Val Asn</td>
<td>500</td>
</tr>
<tr>
<td>Phe Asn Phe Asn Gly Leu Arg Gly Thr Gly Val Leu Thr Thr Ser Ser</td>
<td>515</td>
</tr>
<tr>
<td>Lys Arg Phe Gln Ser Phe Gln Phe Gly Arg Asp Thr Ser Asp Phe</td>
<td>530</td>
</tr>
<tr>
<td>Thr Asp Ser Val Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Ser</td>
<td>545</td>
</tr>
<tr>
<td>Pro Cys Ser Phe Gly Gly Val Ser Ile Thr Pro Gly Thr Asn Ala</td>
<td>565</td>
</tr>
<tr>
<td>Ser Ser Glu Val Ala Val Leu Tyr Glu Asp Val Asn Cys Thr Asp Val</td>
<td>580</td>
</tr>
<tr>
<td>Pro Thr Ser Ile His Ala Asp Gln Leu Thr Pro Ala Thr Arg Val Tyr</td>
<td>595</td>
</tr>
<tr>
<td>Ser Thr Gly Val Asn Val Phe Gln Thr Gln Ala Glys Leu Ile Gly</td>
<td>610</td>
</tr>
<tr>
<td>Ala Glu His Val Asn Ala Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala</td>
<td>625</td>
</tr>
<tr>
<td>Gly Ile Cys Ala Ser Tyr His Thr Ala Ser Val Leu Arg Ser Thr Gly</td>
<td>645</td>
</tr>
<tr>
<td>Gln Lys Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn Ser</td>
<td>665</td>
</tr>
<tr>
<td>Ile Ala Tyr Ala Asn Ser Ile Ala Ile Pro Thr Asn Phe Ser Ile</td>
<td>680</td>
</tr>
<tr>
<td>Ser Val Thr Thr Glu Val Met Pro Val Ser Ile Ala Lys Thr Ser Val</td>
<td>695</td>
</tr>
<tr>
<td>Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Leu Gly Cys Ser Asn Leu</td>
<td>705</td>
</tr>
<tr>
<td>Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Thr</td>
<td>725</td>
</tr>
<tr>
<td>Gly Ile Ala Ile Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala Gln</td>
<td>745</td>
</tr>
<tr>
<td>Val Lys Gln Met Tyr Lys Thr Pro Ala Ile Lys Asp Phe Gly Gly Phe</td>
<td>765</td>
</tr>
<tr>
<td>Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Thr Lys Arg Ser</td>
<td>785</td>
</tr>
<tr>
<td>Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly</td>
<td>800</td>
</tr>
<tr>
<td>Phe Met Lys Glu Tyr Gly Gln Cys Leu Gly Asp Ile Ser Ala Arg Asp</td>
<td>815</td>
</tr>
</tbody>
</table>
Leu  Ile  Cys  Ala  Gln  Lys  Phe  Asn  Gly  Leu  Thr  Leu  Val  Leu  Pro  Pro  Leu
820  825  830
Leu  Thr  Asp  Glu  Met  Ile  Ala  Tyr  Thr  Ala  Ala  Leu  Val  Ser  Gly
835  840  845
Thr  Ala  Thr  Ala  Gly  Trp  Thr  Phe  Gly  Ala  Gly  Ser  Ala  Leu  Gin  Ile
850  855  860
Pro  Phe  Ala  Met  Glu  Met  Ala  Tyr  Arg  Phe  Asn  Gly  Ile  Gly  Val  Thr
865  870  875  880
Gln  Asn  Val  Leu  Tyr  Glu  Asn  Gln  Lys  Gin  Ile  Ala  Asn  Gln  Phe  Asn
885  890  895
Lys  Ala  Ile  Ser  Gln  Ile  Gly  Ser  Leu  Thr  Thr  Ser  Thr  Ala
900  905  910
Leu  Gly  Lys  Leu  Gln  Asp  Val  Asn  Asp  Asn  Ala  Gin  Ala  Leu  Asn
915  920  925
Thr  Leu  Val  Lys  Gln  Leu  Ser  Ser  Asn  Phe  Gly  Ala  Ile  Ser  Ser  Val
930  935  940
Leu  Asn  Asp  Ile  Leu  Ser  Arg  Leu  Asp  Lys  Val  Gln  Ala  Glu  Val  Gin
945  950  955  960
Ile  Asp  Arg  Leu  Ile  Thr  Gly  Arg  Leu  Gln  Ser  Leu  Gin  Thr  Tyr  Val
965  970  975
Thr  Gln  Gln  Leu  Ile  Arg  Ala  Ala  Gly  Ile  Arg  Ala  Ser  Ala  Asn  Leu
980  985  990
Ala  Ala  Thr  Lys  Met  Ser  Glu  Cys  Val  Leu  Gly  Gin  Ser  Lys  Arg  Val
995  1000  1005
Asp  Phe  Cys  Gly  Lys  Gly  Tyr  His  Leu  Met  Ser  Phe  Pro  Gin  Ala
1010  1015  1020
Ala  Pro  His  Gly  Val  Val  Phe  Leu  His  Val  Thr  Tyr  Val  Pro  Ser
1025  1030  1035
Gln  Glu  Arg  Asn  Phe  Thr  Leu  Pro  Ala  Ile  Cys  His  Gly
1040  1045  1050
Lys  Ala  Tyr  Phe  Pro  Arg  Glu  Gly  Val  Phe  Val  Ser  Asn  Gly  Thr
1055  1060  1065
Ser  Trp  Phe  Ile  Thr  Gin  Arg  Asn  Phe  Tyr  Ser  Pro  Glu  Ile  Ile
1070  1075  1080
Thr  Thr  Asp  Asn  Thr  Phe  Val  Ala  Gly  Asn  Cys  Asp  Val  Val  Ile
1095  1099  1100
Gly  Ile  Ile  Asn  Asn  Thr  Val  Tyr  Asp  Pro  Leu  Gin  Pro  Glu  Leu
1100  1105  1110
Asp  Ser  Phe  Lys  Glu  Glu  Leu  Asp  Lys  Tyr  Phe  Asn  His  Thr
1115  1120  1125
Ser  Pro  Asp  Val  Asp  Leu  Gly  Asp  Ile  Ser  Gly  Ile  Asn  Ala  Ser
1130  1135  1140
Val  Val  Asn  Ile  Gln  Lys  Gly  Ile  Asp  Arg  Leu  Asn  Glu  Val  Ala
1145  1150  1155
Lys  Asn  Leu  Asn  Glu  Ser  Leu  Ile  Asp  Leu  Gln  Gln  Leu  Gly  Lys
1160  1165  1170
Tyr  Glu  Gln  Tyr  Ile  Lys  Trp  Pro  Trp  Tyr  Val  Trp  Leu  Gly  Phe
1175  1180  1185
Ile  Ala  Gly  Leu  Ile  Ala  Ile  Val  Met  Val  Thr  Ile  Leu  Cys
1190  1195  1200
Cys  Met  Thr  Ser  Cys  Cys  Ser  Cys  Leu  Lys  Gly  Ala  Cys  Ser  Cys
1205  1210  1215
<table>
<thead>
<tr>
<th>Gly</th>
<th>Ser</th>
<th>Cys</th>
<th>Cys</th>
<th>Lys</th>
<th>Phe</th>
<th>Asp</th>
<th>Glu</th>
<th>Asp</th>
<th>Asp</th>
<th>Ser</th>
<th>Glu</th>
<th>Pro</th>
<th>Val</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1220</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lys</th>
<th>Gly</th>
<th>Val</th>
<th>Leu</th>
<th>His</th>
<th>Tyr</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[<210> SEQ ID NO 5]
[<211> LENGTH: 1355]
[<212> TYPE: PRT]
[<213> ORGANISM: Artificial]
[<220> FEATURE: OTHER INFORMATION: chimeric coronavirus spike protein]

<table>
<thead>
<tr>
<th>&lt;400&gt; SEQUENCE: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Gly</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>Gly</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>Trp</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Leu</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>Pro</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>Ala</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Ser</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>Ala</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>Thr</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>Thr</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>Ile</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>Leu</td>
</tr>
<tr>
<td>195</td>
</tr>
<tr>
<td>Ser</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>Asn</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>Asn</td>
</tr>
<tr>
<td>245</td>
</tr>
<tr>
<td>Glu</td>
</tr>
<tr>
<td>260</td>
</tr>
<tr>
<td>Ser</td>
</tr>
<tr>
<td>275</td>
</tr>
<tr>
<td>Leu</td>
</tr>
<tr>
<td>290</td>
</tr>
<tr>
<td>Phe</td>
</tr>
<tr>
<td>305</td>
</tr>
<tr>
<td>Tyr</td>
</tr>
<tr>
<td>325</td>
</tr>
</tbody>
</table>
Tyr Ile Arg Arg Ala Ile Asp Cys Gly His Asp Asp Leu Ser Gln Leu

His Cys Ser Tyr Thr Ser Phe Glu Asp Thr Gly Val Tyr Ser Val

Ser Ser Tyr Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln Ala Gln

Gly Val Glu Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro Pro Gln

Val Tyr Asn Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr Asn Leu

Thr Lys Leu Leu Phe Ser Val Asp Phe Thr Cys Ser Gln

Ile Ser Pro Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu Ile Leu

Asp Tyr Phe Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser Val Ser

Ser Ala Gly Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe Ser Asn

Pro Thr Cys Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr Thr Ile

Thr Lys Pro Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg Leu Leu

Ser Asp Asp Arg Thr Glu Val Pro Gln Leu Val Asm Ala Asn Gln Tyr

Ser Pro Cys Val Ser Ile Val Pro Ser Thr Val Trp Glu Asp Gly Asp

Tyr Tyr Arg Lys Gln Leu Ser Pro Leu Gly Glu Gly Gly Trp Leu Val

Ala Ser Gly Ser Thr Val Ala Met Thr Glu Gln Leu Gln Met Gly Phe

Gly Ile Thr Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys Pro Lys

Leu Asp Leu Gly Asp Ser Leu Thr Ile Thr Asn Arg Leu Gly Lys Cys

Val Asp Tyr Ser Leu Tyr Val Gly Thr Gly Val Phe Gln Asn

Cys Thr Ala Val Gly Val Lys Gln Glu Arg Phe Val Tyr Asp Ser Phe

Asp Asn Leu Val Gly Tyr Tyr Ser Asp Gly Asn Tyr Tyr Cys Val

Arg Pro Cys Val Ser Val Pro Val Ser Ile Tyr Asp Lys Ser Thr

Asm Leu His Ala Thr Leu Phe Gly Ser Val Ala Cys Glu His Val Thr

Thr Met Met Ser Gln Phe Ser Arg Leu Thr Gln Ser Asn Leu Arg Arg

Arg Asp Ser Asn Ile Pro Leu Gln Thr Ala Val Gly Cys Val Ile Gly

Leu Ser Asn Asn Ser Leu Val Val Ser Asp Cys Lys Leu Pro Leu Gly

Gln Ser Leu Cys Ala Val Pro Val Ser Thr Phe Arg Ser Tyr Ser
Ala Ser Gln Phe Gin Leu Ala Val Leu Asn Tyr Thr Ser Pro Ile Val 725 760 765
Val Thr Pro Ile Asn Ser Ser Ser Gly Phe Thr Ala Ala Ile Pro Thr Asn 770 775 780
Phe Ser Phe Ser Val Thr Gin Tyr Ile Glu Thr Ser Ile Gin Lys 785 790 795 800
Val Thr Val Asp Cys Lys Gin Tyr Val Cys Asn Gly Phe Thr Arg Cys 805 810 815
Glu Lys Leu Leu Val Glu Tyr Gly Gin Phe Cys Ser Lys Ile Asn Gin 820 825 830
Ala Leu His Gly Ala Asn Leu Arg Gin Asp Glu Ser Val Tyr Ser Leu 835 840 845
Tyr Ser Asn Ile Lys Thr Ser Thr Gin Thr Leu Glu Tyr Gly Leu 850 855 860
Asn Gly Asp Phe Asn Leu Thr Leu Leu Gin Pro Ile Gin Lys 865 870 875 880
Ser Ser Ser Tyr Arg Ser Ala Ile Gin Asp Leu Leu Phe Asp Lys 885 890 895
Val Thr Ile Ala Asp Pro Gly Tyr Met Gin Gly Tyr Asp Asp Cys Met 900 905 910
Lys Gin Gly Pro Gin Ser Ala Arg Asp Leu Ile Cys Ala Gin Tyr Val 915 920 925
Ser Gly Tyr Lys Val Leu Pro Pro Leu Tyr Asp Pro Asn Met Glu Ala 930 935 940
Ala Tyr Thr Ser Ser Leu Gly Ser Ile Ala Gin Leu Gin Gly Trp Thr 945 950 955 960
Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gin Ser Met Phe 965 970 975
Tyr Arg Leu Asn Gly Val Gly Ile Thr Gin Gin Val Leu Ser Gin Asn 980 985 990
Gln Lys Ile Ile Ala Asn Lys Phe Asn Gin Ala Leu Gly Ala Met Gin 995 1005
Thr Gly Phe Thr Thr Asn Leu Ala Phe Asn Lys Val Gin Asp 1010 1015 1020
Ala Val Asn Ala Asn Ala Met Ala Leu Ser Lys Leu Ala Ala Gin 1025 1030 1035
Leu Ser Asn Thr Phe Gly Ala Ile Ser Ser Ser Ile Ser Asp Ile 1040 1045 1050
Leu Ala Arg Leu Asp Thr Val Glu Gin Glu Ala Gin Ile Asp Arg 1055 1060 1065
Leu Ile Arg Gin Gin Val Ser Leu Asn Ala Phe Val Ala Gin 1070 1075 1080
Gln Leu Val Arg Thr Glu Ala Ala Ala Arg Ser Ala Glu Leu Ala 1085 1090 1095
Gln Asp Lys Val Gin Glu Cys Val Lys Ser Gin Ser Lys Arg Asn 1100 1105 1110
Gly Phe Cys Gly Thr Gly Thr His Ile Val Ser Phe Ala Ala Gin 1115 1120 1125
Ala Pro Asn Gin Leu Tyr Phe Gin Gin Thr Gin Tyr Leu Gin Pro Thr 1130 1135 1140
Ser His Val Gin Ala Thr Ala Tyr Gly Leu Cys Asn Thr Gin 1145 1150 1155
Asn Pro Pro Lys Cys Ile Ala Pro Ile Asp Gly Tyr Phe Val Leu
Asn Gin 1160
Thr Ser Thr 1165
Ala Arg Ser Ser 1170
Gly Asp Gln His 1175
Trp
Tyr Tyr Thr 1180
Gly Ser Ser 1185
Phe Phe His Pro 1190
Glu Pro Ile Thr Glu 1195
Ala 1200
Asn Ser Lys Tyr Val Ser 1205
Met Asp Val Lys Phe Glu Asn Leu 1210
Thr Asn Lys Leu Pro Pro 1215
Leu Leu Ser Asn Ser Thr Asp Leu 1220
225
Asp Phe Lys Asp Glu Leu Glu 1230
Glu Phe Phe Lys Asn Val Ser Ser 1235
Gln Gly Pro Asn Phe Gln 1240
Glu Ile Ser Lys Ile Asn Thr Thr Leu 1245
1250
Leu Asn Leu Asn Thr Glu Leu Met Val Leu Ser Glu Val Val Lys 1255
1260
Gln Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr 1265
1270
Gly Trp Tyr Gln Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile 1275
1280
Thr Phe 1285
Asp Val Ala Alas 1290
Glu Leu Val Ala Ala 1295
Leu Leu Glu Gly Cys Gly Thr Tyr Ser Cys Leu Gly Lys Leu Lys Cys Asn 1300
1305
1310
Cys Thr Gly Cys Gly Thr Ser 1315
Cys Leu Gly Lys Leu Lys Cys Asn 1320
1325
Arg Cys Cys Asp Ser Tyr Asp Glu Tyr Glu Val Glu Lys Lle His 1330
1335
1340
Val His 1345
1350
1355
Val His
1360

<210> SEQ ID NO 6
<211> LENGTH: 1352
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Bat coronavirus
<400> SEQUENCE: 6
Met Thr Leu Leu Met Cys Leu Leu Met Ser Leu Leu Ile Phe Val Arg 1

Gly Cys Asp Ser Gln Phe Val Asp Met Ser Pro Ala Ser Asn Thr Ser 5
20
25
30
Glu Cys Leu Glu Ser Gln Val Asp Ala Ala Ala Phe Ser Lys Leu Met 35
40
45
Trp Pro Tyr Pro Ile Asp Pro Ser Lys Val Asp Gly Ile Ile Tyr Pro 50
55
60
Leu Gly Arg Thr Tyr Ser Asn Ile Thr Leu Ala Tyr Thr Gly Leu Phe 65
70
75
80
Pro Leu Gin Gly Asp Leu Gly Ser Gln Tyr Leu Tyr Ser Val Ser His 85
90
95
Ala Val Gly His Asp Gly Asp Pro Thr Lys Ala Tyr Ile Ser Asn Tyr 100
105
110
Ser Leu Leu Val Asn Asp Phe Asn Gln Gly Phe Val Val Arg Ile Gly 115
120
125
Ala Ala Ala Asn Ser Thr Gly Thr Ile Val Ile Ser Pro Ser Val Asn 130
135
140
Thr Lys Ile Lys Lys Ala Tyr Pro Ala Phe Ile Leu Gly Ser Ser Leu
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Thr</td>
<td>Asn</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>Gly</td>
<td>Gln</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ala</td>
<td>Asn</td>
<td>Tyr</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>165</td>
<td>170</td>
</tr>
<tr>
<td>Ile</td>
<td>Ile</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Cys</td>
<td>Gly</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>Ala</td>
<td>Phe</td>
<td>Tyr</td>
<td>Cys</td>
</tr>
<tr>
<td>Ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Tyr</td>
<td>Thr</td>
</tr>
<tr>
<td>Val</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
<td>Phe</td>
<td>Ile</td>
</tr>
<tr>
<td>Tyr</td>
<td>Glu</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td>His</td>
<td>Asn</td>
<td>Asp</td>
<td>Cys</td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Asn</td>
<td>Arg</td>
<td>Asn</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Asn</td>
<td>Ser</td>
</tr>
<tr>
<td>Phe</td>
<td>Lys</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Phe</td>
<td>Asp</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Asn</td>
<td>Cys</td>
<td>Thr</td>
<td>Phe</td>
</tr>
<tr>
<td>Phe</td>
<td>Asn</td>
<td>Ser</td>
<td>Trp</td>
</tr>
<tr>
<td>Asp</td>
<td>Ile</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>Asp</td>
<td>Glu</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Glu</td>
<td>Trp</td>
<td>Phe</td>
<td>Gly</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Gln</td>
<td>Asp</td>
</tr>
<tr>
<td>Thr</td>
<td>Gln</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>His</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Tyr</td>
<td>Gly</td>
</tr>
<tr>
<td>Gly</td>
<td>Asn</td>
<td>Met</td>
<td>Phe</td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Ala</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
<td>Ile</td>
<td>Lys</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyr</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td>Ile</td>
<td>Pro</td>
<td>Arg</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Phe</td>
<td>Arg</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td>Ala</td>
<td>Asn</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Trp</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Phe</td>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Tyr</td>
<td>Lys</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Thr</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Phe</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>325</td>
<td>330</td>
<td>335</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ile</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Ile</td>
<td>Asp</td>
<td>Cys</td>
</tr>
<tr>
<td>Gly</td>
<td>His</td>
<td>Asp</td>
<td>Asp</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td>His</td>
<td>Cys</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Tyr</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
</tr>
<tr>
<td>Gly</td>
<td>Thr</td>
<td>Phe</td>
<td>Ile</td>
</tr>
<tr>
<td>Glu</td>
<td>Gln</td>
<td>Pro</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Glu</td>
<td>Cys</td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Met</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>Asn</td>
<td>Phe</td>
</tr>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Asn</td>
<td>Cys</td>
</tr>
<tr>
<td>Asn</td>
<td>Tyr</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>405</td>
<td>410</td>
</tr>
<tr>
<td>Thr</td>
<td>Lys</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>Asp</td>
<td>Glu</td>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>Cys</td>
<td>Asn</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>420</td>
<td>425</td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>Ala</td>
<td>Ile</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
<td>Cys</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td>435</td>
<td>440</td>
</tr>
<tr>
<td>Asp</td>
<td>Tyr</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td>Tyr</td>
<td>Pro</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Met</td>
<td>Lys</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Ile</td>
<td>Arg</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
<td>455</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Gly</td>
<td>Asn</td>
</tr>
<tr>
<td>Ile</td>
<td>Pro</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td>Asn</td>
<td>Tyr</td>
<td>Lys</td>
<td>Gln</td>
</tr>
<tr>
<td>Ser</td>
<td>Phe</td>
<td>Ala</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>465</td>
<td>470</td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>Cys</td>
<td>Arg</td>
</tr>
<tr>
<td>Val</td>
<td>Met</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Ala</td>
<td>Asn</td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>485</td>
<td>490</td>
</tr>
<tr>
<td>Lys</td>
<td>Pro</td>
<td>His</td>
<td>Ala</td>
</tr>
<tr>
<td>Tyr</td>
<td>Gly</td>
<td>Tyr</td>
<td>Ile</td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Cys</td>
<td>Ser</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>505</td>
</tr>
<tr>
<td>Ala</td>
<td>Asn</td>
<td>Gln</td>
<td>Asp</td>
</tr>
<tr>
<td>Val</td>
<td>Glu</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Leu</td>
<td>Tyr</td>
<td>Ile</td>
<td>Asn</td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Glu</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>515</td>
<td>520</td>
</tr>
<tr>
<td>Ser</td>
<td>Ile</td>
<td>Cys</td>
<td>Arg</td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>Gly</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>530</td>
<td>535</td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td>Gln</td>
</tr>
<tr>
<td>Phe</td>
<td>Glu</td>
<td>Gly</td>
<td>Gly</td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>545</td>
<td>550</td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Pro</td>
<td>Met</td>
</tr>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td>Gln</td>
<td>Met</td>
<td>Ser</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>565</td>
<td>570</td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Pro</td>
<td>Met</td>
</tr>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td>Gln</td>
<td>Met</td>
<td>Ser</td>
<td>Phe</td>
</tr>
</tbody>
</table>
Gin Lys Leu Ile Ala Asn Lys Phe  
Thr Gly Phe Thr Thr Ser Asn  
Leu Val Asn Ala Asn Ala Gin  
Leu Ser Asn Thr Phe Gly Ala  
Leu Ala Arg Leu Arg Thr Val  
Leu Ile Asn Gly Arg Leu Thr  
Gln Leu Val Arg Ser Glu Thr  
Ser Asp Lys Val Asn Glu Cys  
Gly Phe Cys Ser Gly Ser Thr  
Ala Pro Asn Gly Phe Tyr Phe  
Asn Tyr Thr Asn Val Thr Ala  
Arg Tyr Val Ser Ser Asp Val  
Leu Pro Pro Leu Leu Leu  
Asp Glu Leu Glu Phe Phe  
Asn Phe Ala Glu Ile Ser Lys  
Asp Ser Tyr Ile Asp Leu Lys  
Asp Ser Tyr Ile Asp Leu Lys  
Asn Lys Trp Pro Trp Tyr Val  
Val Ala Leu Leu Leu Cys Val  
Cys Gly Thr Ser Cys Leu Gly  
Asp Ser Tyr Glu Glu Tyr Asp  
<210> SEQ ID NO 7  
<211> LENGTH: 1353  
<212> TYPE: PRT  
<213> ORGANISM: Artificial  
<220> FEATURE:  
<223> OTHER INFORMATION: MERS coronavirus
<400> SEQUENCE: 7

Met Ile His Ser Val Phe Leu Leu Met Phe Leu Leu Thr Pro Thr Glu
Ser Tyr Val Asp Val Gly Pro Asp Ser Val Lys Ser Ala Cys Ile Glu
Val Asp Ile Gln Gln Thr Phe Asp Lys Thr Trp Pro Arg Pro Ile
Asp Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro Gln Gly Arg Thr Tyr
Ser Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr Gln Gly Asp
His Gly Asp Met Tyr Val Tyr Ser Ala Gly His Ala Thr Gln Thr
Pro Gln Lys Leu Phe Val Ala Asn Tyr Ser Gln Asp Val Lys Gln Phe
Ala Asn Gly Phe Val Val Arg Ile Gly Ala Ala Ala Asn Ser Thr Gly
Thr Val Ile Ile Ser Pro Ser Thr Ser Ala Thr Ile Arg Lys Ile Tyr
Pro Ala Phe Met Leu Gly Ser Ser Val Gln Phe Pro Ser Asp Gly Lys
Met Gly Arg Phe Asn His Thr Leu Val Leu Leu Pro Asp Gly Cys
Gly Thr Leu Arg Ala Phe Tyr Cys Ile Leu Gln Pro Arg Ser Gly
Asn His Cys Pro Ala Gly Asn Ser Tyr Thr Ser Phe Ala Thr Tyr His
Thr Pro Ala Thr Asp Cys Ser Asp Gly Asn Tyr Asn Arg Asn Ala Ser
Leu Asn Ser Phe Lys Glu Tyr Phe Asn Leu Arg Asn Cys Thr Phe Met
Tyr Thr Tyr Asn Ile Thr Glu Asp Glu Ile Leu Gln Trp Phe Gly Ile
Thr Gln Thr Ala Gln Gly Val His Leu Phe Ser Ser Arg Tyr Val Asp
Leu Tyr Gly Asn Met Phe Gly Phe Ala Thr Leu Pro Val Tyr Asp
Thr Ile Lys Tyr Tyr Ser Ile Ile Pro His Ser Ile Arg Ser Ile Gln
Ser Asp Arg Lys Ala Trp Ala Ala Phe Tyr Val Tyr Lys Leu Gln Pro
Leu Thr Phe Leu Leu Asp Phe Ser Val Asp Gly Tyr Ile Arg Arg Ala
Ile Asp Cys Gly Phe Asn Asp Leu Ser Gln Leu His Cys Ser Tyr Glu
Ser Phe Asp Val Glu Ser Val Tyr Ser Val Ser Phe Glu Ala
Lys Ser Ser Gly Ser Val Glu Gln Ala Gln Gly Val Glu Cys Asp
Phe Ser Pro Leu Leu Ser Gly Thr Pro Pro Gln Val Tyr Asn Phe Lys
Arg Leu Val Phe Thr Asn Cys Asn Tyr Asn Leu Thr Lys Leu Leu Ser
Ile Ala Ser Asn Cys Tyr Ser Ser Leu Ile Leu Asp Tyr Phe Ser Tyr 435 440 445
Pro Leu Ser Met Lys Ser Asp Leu Ser Val Ser Ser Ala Gly Pro Ile 450 455 460
Ser Gly Phe Asn Tyr Lys Gly Ser Phe Ser Asn Pro Thr Cys Leu Ile 465 470 475 480
Leu Ala Thr Val Pro His Asn Leu Thr Thr Ile Thr Lys Pro Leu Lys 485 490 495

Glu Val Pro Gln Leu Val Val Ala Asn Gln Tyr Ser Pro Cys Val Ser 515 520 525
Ile Val Pro Ser Thr Val Trp Glu Asp Gly Asp Tyr Tyr Arg Lys Gln 530 535 540
Leu Ser Pro Leu Gly Gly Gly Trp Leu Val Ala Ser Gly Ser Thr 545 550 555 560
Val Ala Met Thr Glu Gln Leu Gln Met Gly Phe Gly Ile Thr Val Gln 565 570 575

Glu Leu Arg Leu Ser Asp Gly Asp Tyr Ser Arg Leu Leu Ser Gly Ser Ser 585 590
Ile Leu Phe Leu Met Ser Tyr Ser Thr Val Cys Asp Val Ser Gly Ala Val 600 605
Tyr Gly Val Ser Gly Ser Val Cys Pro Lys Leu Glu Phe Ala Asn 610 615 620
Val Arg Gln Gln Arg Phe Val Tyr Asp Ala Tyr Gln Asn Leu Val Gly 625 630 635 640
Tyr Tyr Ser Asp Gly Asn Tyr Tyr Cys Leu Arg Ala Cys Val Ser 645 650 655
Val Pro Val Ser Val Ile Tyr Asp Lys Glu Thr Lys Thr His Ala Thr 660 665 670

Leu Phe Gly Ser Val Ala Cys Glu His Ile Ser Ser Thr Met Ser Gln 675 680 685
Tyr Ser Arg Ser Thr Arg Ser Met Leu Lys Arg Arg Asp Ser Thr Tyr 690 695 700
Gly Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly Leu Val Asn Ser 705 710 715 720
Ser Leu Phe Val Glu Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Cys 725 730 735

 Ala Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Ser 740 745 750
Val Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Pro Asn His Pro Ile 755 760 765
Gln Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile Pro Thr 770 775 780
A Asn Phe Ser Phe Gly Val Thr Gln Gly Tyr Ile Gln Thr Thr Ile Gln 795 799 800
Lys Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe Gln Lys 805 810 815
Cys Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys Ile Asn 820 825 830
Gln Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser Val Arg Asn
635 840 845
Leu Phe Ala Ser Val Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly
850 855 860
Phe Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser
865 870 875 880
Thr Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu Phe Asp
885 890 895
Lys Val Thr Ile Ala Asp Pro Gly Tyr Met Gln Gly Tyr Asp Asp Cys
900 905 910
Met Gln Gln Gly Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala Gln Tyr
915 920 925
Val Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu
930 935 940
Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp
945 950 955 960
Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile
965 970 975
Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu
980 985 990
Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met
995 1000 1005
Gln Thr Gly Phe Thr Thr Asn Glu Ala Phe Gln Lys Val Gln
1010 1015 1020
Asp Ala Val Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser
1025 1030 1035
Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp
1040 1045 1050
Ile Ile Gin Arg Leu Asp Val Leu Glu Gin Asp Ala Gin Ile Asp
1055 1060 1065
Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe Val Ala
1070 1075 1080
Gln Gin Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln Leu
1085 1090 1095
Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg
1100 1105 1110
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val
1115 1120 1125
Asn Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro
1130 1135 1140
Ser Asn His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala
1145 1150 1155
Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile
1160 1165 1170
Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly
1175 1180 1185
Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys
1190 1195 1200
Tyr Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser Thr Asn Leu
1205 1210 1215
Pro Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp
1220 1225 1230
Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Arg 1235
Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr 1250
Tyr Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu 1265
Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Aam 1280
Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val 1295
Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys 1310
Gly Thr Asn Cys Met Gln Asp Leu Lys Cys Asn Arg Cys Cys Asp 1325
Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His 1340

<210> SEQ ID NO 8
<211> LENGTH: 1357
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Bat coronavirus

<400> SEQUENCE: 8

Met Ile Arg Ser Val Leu Val Leu Met Cys Ser Leu Thr Phe Ile Gly 1 5 10 15
Asn Arg Thr Ser Cys Gln Ser Val Asp Ile Gly Thr Pro Val Thr Gly 20 25 30
Ser Cys Leu Arg Ser Gln Val Arg Pro Glu Tyr Phe Asp Ile Val His 35 40 45
Asn Thr Trp Pro Met Pro Ile Asp Thr Ser Lys Ala Glu Gly Val Ile 50 55 60
Tyr Pro Asn Gly Lys Ser Tyr Ser Asn Ile Ser Leu Thr Tyr Thr Gly 65 70 75 80
Leu Tyr Pro Lys Ala Lys Asp Leu Gly Lys Gin Tyr Leu Phe Ser Asp 85 90 95
Gly His Ser Ala Pro Asn Gln Leu Asn Asp Leu Phe Val Ser Asn Tyr 100 105 110
Ser Ala Gln Val Glu Ser Phe Asp Gly Phe Val Val Arg Ile Gly 115 120 125
Ala Ala Ser Asn Lys Thr Gly Thr Thr Val Ile Ser Gln Thr Thr Phe 130 135 140
Lys Pro Ile Lys Ile Tyr Pro Gly Phe Met Leu Gly His Ala Val 145 150 155 160
Gly Asn Tyr Thr Pro Thr Asn Ile Thr Gly Arg Tyr Leu Asn His Thr 165 170 175
Leu Val Ile Leu Pro Asp Cys Cly Thr Leu Val His Ala Phe Tyr 180 185 190
Cys Ile Leu Glu Pro Arg Thr Gln Ala Asn Cys Pro Gly Ala Ser Ser 195 200 205
Phe Thr Ser Val Thr Leu Trp Asp Thr Pro Ala Thr Asp Cys Ala Pro 210 215 220
Ser Gly Val Tyr Asn Ser Leu Ala Asn Leu Asn Ala Phe Lys Leu Tyr 225 230 235 240
Phe Asp Leu Ile Asn Cys Thr Phe Arg Tyr Asn Tyr Thr Ile Thr Glu 245 250 255
Asp Glu Asn Ala Glu Trp Phe Gly Ile Thr Gln Asp Thr Gln Gly Val 260 265 270
His Leu Tyr Ser Ser Arg Lys Glu Asn Val Phe Arg Asn Asn Met Phe 275 280 285
His Phe Ala Thr Leu Pro Val Tyr Gln Lys Ile Leu Tyr Tyr Thr Val 290 295 300
Ile Pro Arg Ser Ile Arg Ser Pro Phe Asp Arg Arg Lys Ala Trp Ala 310 315 320
Ala Phe Tyr Ile Tyr Lys Leu His Pro Leu Thr Tyr Leu Leu Asn Phe 325 330 335
Asp Val Glu Gly Tyr Ile Thr Lys Ala Val Asp Cys Gly Tyr Asp Asp 340 345 350
Phe Ala Gln Leu Gln Cys Ser Tyr Glu Asn Phe Asp Val Glu Thr Gly 355 360 365
Val Tyr Ser Val Ser Phe Gly Ala Ser Pro Arg Gly Glu Phe Ile 375 380
Glu Gln Ala Thr Thr Glu Cys Asp Phe Thr Thr Pro Met Leu Thr Gly 390 395 400
Thr Pro Pro Pro Ile Tyr Asp Phe Lys Arg Leu Val Phe Thr Asn Cys 405 410 415
Asn Tyr Asn Leu Thr Lys Leu Leu Ser Leu Phe Gln Val Ser Glu Phe 420 425 430
Ser Cys His Gln Val Ser Pro Ser Ser Leu Ala Thr Gly Cys Tyr Ser 435 440 445
Ser Leu Thr Val Asp Tyr Phe Ala Tyr Ser Thr Asp Met Ser Ser Tyr 455 460
Leu Gln Pro Gly Ser Ala Gly Glu Val Gln Phe Asn Tyr Lys Gln 465 470 475 480
Asp Phe Ser Asn Pro Thr Cys Arg Val Leu Ala Thr Val Pro Thr Asn 485 490 495
Leu Thr Thr Ile Thr Lys Ser Ser Asn Tyr Val His Leu Thr Glu Cys 500 505 510
Tyr Lys Ser Thr Ala Tyr Gln Asn Tyr Leu Tyr Asn Ala Pro Gly 515 520 525
Gly Tyr Thr Pro Cys Leu Ser Leu Ala Ser Arg Gly Phe Thr Thr Asn 530 535 540
Arg Gln Ser His Ser Leu Glu Leu Pro Asp Gly Tyr Leu Val Thr Thr 545 550 555 560
Gly Ser Val Tyr Pro Val Asn Gly Asn Leu Gln Met Ala Phe Ile Ile 555 560 570 575
Ser Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys Pro Met Gln Ala 580 585 590
Leu Arg Asn Asp Thr Ser Ile Glu Asp Lys Leu Asp Val Cys Val Glu 595 600 605
Tyr Ser Leu His Gly Ile Thr Gly Arg Gly Val Phe His Asn Cys Thr 610 615 620
Ser Val Gly Leu Arg Asn Gln Arg Phe Val Tyr Asp Thr Phe Asp Asn 625 630 635 640
Leu Val Gly Tyr His Ser Asp Asn Gln Tyr Tyr Cys Val Arg Pro 645 650 655
Cys Val Ser Val Pro Val Ser Val Ile Tyr Asp Lys Ala Ser Asn Ser
<table>
<thead>
<tr>
<th></th>
<th>660</th>
<th>665</th>
<th>670</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Ala Thr Leu Phe Gly Ser Val Ala Cys Ser His Val Thr Thr Met</td>
<td>675</td>
<td>680</td>
<td>685</td>
</tr>
<tr>
<td>Met Ser Gln Phe Ser Arg Met Thr Lys Thr Asn Leu Pro Ala Arg Thr</td>
<td>690</td>
<td>695</td>
<td>700</td>
</tr>
<tr>
<td>Thr Pro Gly Pro Leu Gln Thr Val Gly Cys Ala Met Gly Phe Ile</td>
<td>705</td>
<td>710</td>
<td>715</td>
</tr>
<tr>
<td>Asn Ser Ser Met Val Val Asp Gly Cys Gin Leu Pro Leu Gly Gin Ser</td>
<td>725</td>
<td>730</td>
<td>735</td>
</tr>
<tr>
<td>Leu Cys Ala Ile Pro Pro Thr Ser Thr Thr Arg Phe Arg Arg Ala Thr</td>
<td>740</td>
<td>745</td>
<td>750</td>
</tr>
<tr>
<td>Ser Ile Pro Asp Val Phe Gin Ile Ala Thr Leu Asn Phe Thr Ser Pro</td>
<td>755</td>
<td>760</td>
<td>765</td>
</tr>
<tr>
<td>Leu Thr Leu Ala Pro Ile Asn Ser Thr Gly Phe Val Val Ala Val Pro</td>
<td>770</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td>Thr Asn Phe Thr Phe Gly Val Thr Gin Glu Phe Ile Glu Thr Thr Ile</td>
<td>785</td>
<td>790</td>
<td>795</td>
</tr>
<tr>
<td>Gin Lys Ile Thr Val Asp Cys Gin Tyr Val Cys Asn Gly Phe Lys</td>
<td>805</td>
<td>810</td>
<td>815</td>
</tr>
<tr>
<td>Lys Cys Gin Asp Leu Leu Lys Gin Tyr Gin Phe Cys Ser Lys Ile</td>
<td>820</td>
<td>825</td>
<td>830</td>
</tr>
<tr>
<td>Asn Gin Ala Leu His Gly Ala Asn Leu Arg Gin Asp Gin Ser Ile Ala</td>
<td>835</td>
<td>840</td>
<td>845</td>
</tr>
<tr>
<td>Asn Leu Phe Ser Ser Ile Lys Thr Gin Asn Thr Gin Pro Leu Gin Ala</td>
<td>850</td>
<td>855</td>
<td>860</td>
</tr>
<tr>
<td>Gin Leu Asn Gly Asp Phe Asn Leu Thr Met Leu Gin Ile Pro Gin Val</td>
<td>865</td>
<td>870</td>
<td>875</td>
</tr>
<tr>
<td>Thr Thr Gly Glu Arg Lys Tyr Arg Ser Thr Ile Glu Asp Leu Leu Phe</td>
<td>885</td>
<td>890</td>
<td>895</td>
</tr>
<tr>
<td>Asn Lys Val Thr Ile Ala Asp Pro Gly Tyr Met Gin Gly Tyr Asp Gin</td>
<td>900</td>
<td>905</td>
<td>910</td>
</tr>
<tr>
<td>Cys Met Gin Gin Gly Pro Gin Ser Ala Arg Asp Leu Ile Cys Ala Gin</td>
<td>915</td>
<td>920</td>
<td>925</td>
</tr>
<tr>
<td>Tyr Val Ala Gly Tyr Lys Val Leu Pro Pro Leu Tyr Asp Pro Tyr Met</td>
<td>930</td>
<td>935</td>
<td>940</td>
</tr>
<tr>
<td>Glu Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Ala Ser</td>
<td>945</td>
<td>950</td>
<td>955</td>
</tr>
<tr>
<td>Trp Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gin Ser</td>
<td>965</td>
<td>970</td>
<td>975</td>
</tr>
<tr>
<td>Ile Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gin Gin Val Leu Ser</td>
<td>980</td>
<td>985</td>
<td>990</td>
</tr>
<tr>
<td>Glu Asn Gin Lys Ile Ile Ala Asn Lys Phe Asn Gin Ala Leu Gly Ala</td>
<td>995</td>
<td>1000</td>
<td>1005</td>
</tr>
<tr>
<td>Met Gin Thr Gly Phe Thr Thr Asn Leu Ala Phe Asn Lys Val</td>
<td>1010</td>
<td>1015</td>
<td>1020</td>
</tr>
<tr>
<td>Gin Asp Ala Val Gin Ala Asn Ala Met Ala Leu Ser Lys Leu Ala</td>
<td>1025</td>
<td>1030</td>
<td>1035</td>
</tr>
<tr>
<td>Ala Glu Leu Ser Asn Thr Phe Gin Ala Ile Ser Ser Ser Ile Ser</td>
<td>1040</td>
<td>1045</td>
<td>1050</td>
</tr>
<tr>
<td>Asp Ile Leu Ala Arg Leu Asp Thr Val Glu Gin Glu Ala Gin Ile</td>
<td>1055</td>
<td>1060</td>
<td>1065</td>
</tr>
<tr>
<td>Asp Arg Leu Ile Asn Gly Arg Leu Thr Ser Leu Asn Ala Phe Val</td>
<td>1070</td>
<td>1075</td>
<td>1080</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A chimeric coronavirus spike protein comprising, in orientation from amino to carboxy terminus:
   a) a first region comprising a portion of a coronavirus spike protein ectodomain that precedes a coronavirus spike protein receptor binding domain (RBD) as located in a nonchimeric coronavirus spike protein, of a first coronavirus;
   b) a second region comprising a coronavirus spike protein receptor binding domain (RBD) of a second coronavirus that is different from said first coronavirus;
   c) a third region comprising a portion of a coronavirus spike protein S1 domain as located in a nonchimeric coronavirus spike protein immediately downstream of the RBD, contiguous with a portion of a coronavirus spike protein S2 domain as located immediately upstream of a fusion protein domain in a nonchimeric coronavirus spike protein, wherein said third region is of said first coronavirus; and
d) a fourth region comprising a portion of a coronavirus spike protein from the start of the fusion protein domain through the carboxy terminal end as located in a nonchimeric coronavirus spike protein of a third coronavirus that is different from said first coronavirus and said second coronavirus.

2. The chimeric coronavirus spike protein of claim 1, wherein the chimeric coronavirus spike protein is derived from subgroup 1a coronaviruses, subgroup 1b coronaviruses, subgroup 2a coronaviruses, subgroup 2b coronaviruses, subgroup 2c coronaviruses, subgroup 2d coronaviruses or subgroup 3 coronaviruses.

3. The chimeric coronavirus of claim 2, derived from subgroup 2b coronaviruses wherein said first, second and third subgroup 2b coronaviruses are different from one...
another and wherein the subgroup 2b coronaviruses are selected from the group consisting of Bat SARS CoV (GenBank Accession No. FJ211859), SARS CoV (GenBank Accession No. FJ211860), BtSARS.HKU5.1 (GenBank Accession No. DQ622305), BtSARS.HKU3.2 (GenBank Accession No. DQ841999), BtSARS.HKU3.3 (GenBank Accession No. DQ084200), BtSARS.Rn1 (GenBank Accession No. DQ412043), BtCoV.279.2005 (GenBank Accession No. DQ648857), BtSARS.Rf1 (GenBank Accession No. DQ412042), BtCoV.273.2005 (GenBank Accession No. DQ648856), BtSARS.Rp3 (GenBank Accession No. DQ016115), SARS CoV.A022 (GenBank Accession No. AY886863), SARS CoV.U11K-W1 (GenBank Accession No. AY278554), SARS CoV.DG01 (GenBank Accession No. AY278489), SARS CoV.HC.SZ.61.03 (GenBank Accession No. AY515512), SARS CoV.SZ16 (GenBank Accession No. AY304488), SARS CoV.Urbani (GenBank Accession No. AY278741), SARS CoV.Vet010 (GenBank Accession No. AY572053), and SARS CoV.M.A.15 (GenBank Accession No. DQ497008).

5. The chimeric coronavirus spike protein of claim 1, comprising the amino acid sequence:

```
MKILLLIPLA NLACKRNCOGG ISSRFPQKQV AQVSSREXQAV YNDDDFQRS RLVQQQFL
PFDNLQTSQF SLNVDQGRTF YFFNPLRDQS DQYFRAQKEF SQVQGWRQF SGFDNGEQQA
VIVNNENHHX IVQCNPNLFE EKMTTVSRGT QMWWNVGSDK KFETYDLRE VQGQOLFTK
GNNFEKRDRT FYKRGQGLSLY QOYTTAVNLG RGPPTGGSVLS KFILKLFPGI NITSSRVMQA
MFQPOTQSNL PERSAYTVGN LKYSCPMLRF NENQGTDAC DGCMNQLRAEL KOTIEENYNVD
KQITYQSNFR VPQFTQEVIRF PNNWLCPEP CPRFPK FVFRATXPFP WYSHREXKIS NCVADYSVLY
NHFSPFLTN EYXUANTKHM LEDCNVYAD PUVKGDVQIQ IAOGTQTVIA DNYKELPPEF
MVCWALNRT NIDATSTNY NKKKLYRHN KLEFPPKNI SIVPPSPQFP CTPPAIYCN
PLDYGYPYTRQPQGQPVF VQLFQELNA PATWQPEFLS TDLWENQCNF FHFMLKEGTQ
VLSTSSRKPQ SPQQPSDRTS DPTSDWRFQP TTLELDISP PCFIVSYIVFT GTVASSEYV
LVQWDYTDD PVSTAREPQ EPFRXTSTPV NKFQTPAQCL IGAHKVGNAY ECDIPFAGI
CASYNASTUL ROTOQOISVA YTMGLOAIENS IATANSAAI PTPGISIVTT VYMPVSMANK
AVDDCTMYCOS DBCRKLNLIL QGQFOCTQLN RALTQIAIEQ DENTQVFQV APVNPKTFAI
KDQPDQFNSQ ILDPDSKFTK IKSFGDLDPK YKQSDLGQFPS SARDLQCKQ
FNGTLYLPIL IEDBMMQVNY ALDDQSTATA GTFTGAGAL DQFPPQMQV RPQIGXQCN
VNYQNIQJQ KQWPPISQI QGSLTTSTA LOKLQSVQV NDALQNLVVK QLSNPQASIS
SVLINDISL DKEVRQCID RITQRQOLI QTVFQLCIL AAEIASANL AATTMSCVL
QSQVSGFQG XQVLMFHFQ RPQAVQNLFV VTVQFCQEQPPT FPDPCNIECQXQFPFRCV
FYENITRQ FQFMPFQRIITT DTPQVFAQ NCEPVQGIA NTVVPIQF POOKPKEELD
VFQEQNPQD DLODASGINA SNNQKEID ELNEVADLMN ESILIDQEOF KPYQIKFNN
YWWLQGAFL IAIVYQTTT CTMSSCSCG KRCACSGCSEC KFEDDSEVP LGVWYHT.
```

6. The chimeric coronavirus of claim 2, derived from subgroup 2c coronaviruses wherein said first, second and third subgroup 2c coronaviruses are different from one another and wherein the subgroup 2c coronaviruses are selected from the group consisting of Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012 (GenBank Accession No. KF600652.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_18_2013 (GenBank Accession No. KF600651.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_17_2013 (GenBank Accession No. KF600647.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_15_2013 (GenBank Accession No. KF600645.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_16_2013 (GenBank Accession No. KF600644.1), Middle East respiratory syndrome coronavirus isolate Al-Hasa_21_2013 (GenBank Accession No. KF600634), Middle East respiratory syndrome coronavirus isolate Al-Hasa_19_2013 (GenBank Accession No. KF600632), Middle East respiratory syndrome coronavirus isolate Bishah_1_2012 (GenBank Accession No. KF600621.1), Middle East respiratory syndrome coronavirus isolate Riyadh_3_2013 (GenBank Accession No. KF600613.1), Middle East respiratory syndrome coronavirus isolate Riyadh_2_2012 (GenBank Accession No. KF600612.1).
The chimeric subgroup 2ε coronavirus spike protein of claim 6, wherein said first subgroup 2ε coronavirus is BiCoV HKU4 (GenBank Accession No. EF065506), and said second subgroup 2ε coronavirus is MERS-CoV (GenBank Accession No. JX869059), and said third subgroup 2ε coronavirus is BiCoV HKU5 (GenBank Accession No. EF065511), human betacoronavirus 2ε Jordan-N3/2012 (GenBank Accession No. KC776174.11); human betacoronavirus 2ε EMC/2012 (GenBank Accession No. JX869059).
9. An isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of claim 1.

10. A vector comprising the isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of claim 1.

11. A Venezuelan equine encephalitis replicon particle (VRP) comprising the isolated nucleic acid molecule encoding the chimeric coronavirus spike protein of claim 1.

12. A virus like particle (VLP) comprising the chimeric coronavirus spike protein of claim 1 and a matrix protein of any virus that can form a VLP.


15. A composition comprising the chimeric spike protein of claim 1 in a pharmaceutically acceptable carrier.

16. A composition comprising the nucleic acid molecule of claim 9 in a pharmaceutically acceptable carrier.

17. A composition comprising the vector of claim 10 in a pharmaceutically acceptable carrier.

18. A composition comprising the VRP of claim 11 in a pharmaceutically acceptable carrier.

19. A composition comprising the population of claim 14 in a pharmaceutically acceptable carrier.

20. A method of producing an immune response to a coronavirus in a subject, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of claim 1, thereby producing an immune response to a coronavirus in the subject.

21. A method of treating a coronavirus infection in a subject in need thereof, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of claim 1, thereby treating a coronavirus infection in the subject.

22. A method of preventing a disease or disorder caused by a coronavirus infection in a subject, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of claim 1, thereby preventing a disease or disorder caused by a coronavirus infection in the subject.

23. A method of protecting a subject from the effects of coronavirus infection, comprising administering to the subject an effective amount of the chimeric coronavirus spike protein of claim 1, thereby protecting the subject from the effects of coronavirus infection.